Otwarty dostęp

DFT Simulations of ZnxMg1–XO Solid Solutions for Solar-Blind UV Sensors: Evaluation of Electronic Structure and Phase Stability


Zacytuj

1. Wu, Z., Bai, G., Qu, Y., Guo, D., Li, L., Li, P., … & Tang, W. (2016). Deep Ultraviolet Photoconductive and Near-Infrared Luminescence Properties of Er3+-Doped β-Ga2O3 Thin Films. Applied Physics Letters, 108, 211903. DOI: 10.1063/1.4952618 Open DOISearch in Google Scholar

2. Wu, P., Funato, M., & Kawakami, Y. (2015). Environmentally Friendly Method to Grow Wide-Bandgap Semiconductor Aluminum Nitride Crystals: Elementary Source Vapor Phase Epitaxy. Scientific reports, 5, 1–9. DOI: 10.1038/srep17405466376226616203 Open DOISearch in Google Scholar

3. Koide, Y., Liao, M., Alvarez, J., Imura, M., Sueishi, K., & Yoshifusa, F. (2009). Schottky Photodiode Using Submicron Thick Diamond Epilayer for Flame Sensing. Nano-Micro Letters, 1, 30–33. DOI: 10.1007/BF03353603 Open DOISearch in Google Scholar

4. Liao, M., Sang, L., Teraji, T., Imura, M., Alvarez, J., & Koide, Y. (2012). Comprehensive Investigation of Single Crystal Diamond Deep-Ultraviolet Detectors. Japanese Journal of Applied Physics, 51, 090115. DOI: 10.1143/JJAP.51.090115 Open DOISearch in Google Scholar

5. Aldalbahi, A., & Feng, P. (2015). Development of 2-D Boron Nitride Nanosheets UV Photoconductive Detectors. IEEE Transactions on Electron Devices, 62, 1885–1890. DOI: 10.1109/TED.2015.2423253 Open DOISearch in Google Scholar

6. Vennegues, P., Bougrioua, Z., Bethoux, J., Azize, M., & Tottereau, O. (2005). Relaxation Mechanisms in Metal-Organic Vapor Phase Epitaxy Grown Alrich (Al,Ga)N\GaN Heterostructures. Journal of Applied Physics, 97, 024912.DOI: 10.1063/1.1828607 Open DOISearch in Google Scholar

7. Koike, K., Hama, K., Nakashima, I., Takada, G.-y., Ogata, K.-i., Sasa, S., … & Yano, M. (2005). Molecular Beam Epitaxial Growth of Wide Bandgap ZnMgO Alloy Films on (111)-Oriented Si Substrate toward UV-Detector Applications. Journal of Crystal Growth, 278, 288–292. DOI: 10.1016/j. jcrysgro.2005.01.021 Open DOISearch in Google Scholar

8. Fan, M., Liu, K., Zhang, Z., Li, B., Chen, X., Zhao, D., … & Shen, D. (2014). High-Performance Solar-Blind Ultraviolet Photodetector Based on Mixed-Phase ZnMgO Thin Film. Applied Physics Letters, 105, 011117. DOI: 10.1063/1.4889914 Open DOISearch in Google Scholar

9. Mayes, E., Murdoch, B., Bilek, M., McKenzie, D., McCulloch, D., & Partridge, J. (2015). Co-deposition of Band-Gap Tuned Zn1−xMgxO Using High Impulse Power-and DC-Magnetron Sputtering. Journal of Physics D: Applied Physics, 48, 135301. DOI: 10.1088/0022-3727/48/13/135301 Open DOISearch in Google Scholar

10. Takeuchi, I., Yang, W., Chang, K.-S., Aronova, M., Venkatesan, T., Vispute, R., & Bendersky, L. (2003). Monolithic Multichannel Ultraviolet Detector Arrays and Continuous Phase Evolution in MgxZn1−xO Composition Spreads. Journal of Applied Physics, 94, 7336–7340. DOI: 10.1063/1.1623923 Open DOISearch in Google Scholar

11. Wen, M., Lu, S., Chang, L., Chou, M., & Ploog, K., (2017). Epitaxial Growth of Rocksalt Zn1−xMgxO on MgO (100) Substrate by Molecular Beam Epitaxy. Journal of Crystal Growth, 477, 169–173. DOI: 10.1016/j.jcrysgro.2017.01.023 Open DOISearch in Google Scholar

12. Gonzalez, R., Monge, M., Santiuste, J.M., Pareja, R., Chen, Y., Kotomin, E., ... & Popov, A. (1999). Photoconversion of F-type Centers in Thermochemically Reduced MgO Single Crystals. Physical Review B, 59, 4786. DOI: 10.1103/PhysRevB.59.4786 Open DOISearch in Google Scholar

13. Monge, M., Gonzalez, R., Santiuste, Pareja, R., Chen, Y., Kotomin, E., & Popov, A. (1999). Photoconversion and Dynamic Hole Recycling Process in Anion Vacancies in Neutron-Irradiated MgO Crystals. Physical Review B, 60, 3787. DOI: 10.1103/PhysRevB.60.3787 Open DOISearch in Google Scholar

14. Monge, M., Gonzalez, R., Santiuste, J.M., Pareja, R., Chen, Y., Kotomin, E., & Popov, A. (2000). Photoconversion of F+ Centers in Neutron-Irradiated MgO. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 166, 220–224. DOI: 10.1016/S0168-583X(99)00751-X Open DOISearch in Google Scholar

15. Khaliullin, S.M., Zhuravlev, V., Ermakova, L., Buldakova, L.Y., Yanchenko, M.Y., & Porotnikova, N. (2019). Solution Combustion Synthesis of ZnO Using Binary Fuel (Glycine + Citric Acid). International Journal of Self-Propagating High-Temperature Synthesis, 28, 226–232. DOI: 10.3103/S1061386219040058 Open DOISearch in Google Scholar

16. Grigorjeva, L., Millers, D., Smits, K., Pankratov, V., Lojkowski, W., Fidelus, J., … & Monty, C. (2009). Excitonic Luminescence in ZnO Nanopowders and Ceramics. Optical Materials, 31, 1825–1827. DOI: 10.1016/j.optmat.2008.10.052 Open DOISearch in Google Scholar

17. Uklein, A., Multian, V., Kuz’micheva, G., Linnik, R., Lisnyak, V., Popov, A., & Gayvoronsky, V.Y. (2018). Nonlinear Optical Response of Bulk ZnO Crystals with Different Content of Intrinsic Defects. Optical Materials, 84, 738–747. DOI: 10.1016/j.optmat.2018.08.001 Open DOISearch in Google Scholar

18. Babu, K. S., Reddy, A. R., & Reddy, K. V. (2015). Green Emission from ZnO–MgO Nanocomposite due to Mg Diffusion at the Interface. Journal of Luminescence, 158, 306–312.10.1016/j.jlumin.2014.10.027 Search in Google Scholar

19. Wang, L., Ma, J., Xu, H., Zhang, C., Li, X., & Liu, Y. (2013). Anisotropic Strained Cubic MgZnO/MgO Multiple-Quantum-Well Nanorods: Growths and Optical Properties. Applied Physics Letters, 102, 031905. DOI: 10.1063/1.4788685 Open DOISearch in Google Scholar

20. Lu, C.-Y.J., Tu, Y.-T., Yan, T., Trampert, A., Chang, L., & Ploog, K. (2016). Growth and Stability of Rocksalt Zn1−xMgxO Epilayers and ZnO/MgO Superlattice on MgO (100) Substrate by Molecular Beam Epitaxy. The Journal of Chemical Physics, 144, 214704. DOI: 10.1063/1.495088527276963 Open DOISearch in Google Scholar

21. Wang, L., Ju, Z., Shan, C., Zheng, J., Li, B., Zhang, Z., … & Zhang, J. (2010). Epitaxial Growth of High Quality Cubic MgZnO Films on MgO Substrate. Journal of Crystal Growth, 312, 875–877. DOI: 10.1016/j.jcrysgro.2010.01.009 Open DOISearch in Google Scholar

22. Liang, H., Mei, Z., Liu, Z., Guo, Y., Azarov, A.Y., Kuznetsov, A.Y., ... & Du, X. (2012). Growth of Single-Phase Mg0.3Zn0.7O Films Suitable for Solar-Blind Optical Devices on RS-MgO Substrates. Thin Solid Films, 520, 1705–1708. DOI: 10.1016/j.tsf.2011.08.019 Open DOISearch in Google Scholar

23. Lu, C.-Y., Yan, T., Chang, L., Ploog, K., Chou, M., & Chiang, C.-M. (2013). Rocksalt Zn1−xMgxO Epilayer Having High Zn Content Grown on MgO (100) Substrate by Plasma-Assisted Molecular Beam Epitaxy. Journal of Crystal Growth, 378, 168–171. DOI: 10.1016/j.jcrysgro.2012.12.053 Open DOISearch in Google Scholar

24. Wen, M., Yan, T., Chang, L., Chou, M., Ye, N., & Ploog, K. (2017). Achieving High MgO Content in Wurtzite ZnO Epilayer Grown on ScAlMgO4 Substrate. Journal of Crystal Growth, 477, 174–178. DOI: 10.1016/j.jcrysgro.2016.12.031 Open DOISearch in Google Scholar

25. Maznichenko, I., Ernst, A., Bouhassoune, M., Henk, J., Dane, M., Lueders, M., … & Temmerman, W.M. (2009). Structural Phase Transitions and Fundamental Band Gaps of MgxZn1−xO Alloys from First Principles. Physical Review B, 80, 144101. DOI: 10.1103/PhysRevB.80.144101 Open DOISearch in Google Scholar

26. Djelal, A., Chaibi, K., Tari, N., Zitouni, K., & Kadri, A. (2017). Ab-initio DFT-FPLAPW/TB-mBJ/LDA-GGA Investigation of Structural and Electronic Properties of MgxZn1−xO Alloys in Wurtzite, Rocksalt and Zinc-Blende Phases. Superlattices and Microstructures, 109, 81–98. DOI: 10.1016/j.spmi.2017.04.041 Open DOISearch in Google Scholar

27. Xu, H., Sheng-Qiang, R., Chun-Xiu, L., Li-Li, W., Jing-Quan, Z., & Zheng, D. (2018). Zn1−xMgxO: Band Structure and Simulation as Window Layer for CdTe Solar Cell by SCAPS Software. Journal of Inorganic Materials, 33, 635–640. DOI: 10.15541/jim20170349 Open DOISearch in Google Scholar

28. Bhadram, V.S., Cheng, Q., Chan, C.K., Liu, Y., Lany, S., Landskron, K., & Strobel, T.A. (2018). ZnxMn1−xO Solid Solutions in the Rocksalt Structure: Optical, Charge Transport, and Photoelectrochemical Properties. ACS Applied Energy Materials, 1, 260–266. DOI: 10.1021/acsaem.7b00084 Open DOISearch in Google Scholar

29. Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C.M., Civalleri, B., Maschio, L., … & Kirtman, B. (2018). Quantum-Mechanical Condensed Matter Simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science, 8, e1360. DOI: 10.1002/wcms.1360 Open DOISearch in Google Scholar

30. Peintinger, M.F., Oliveira, D.V., & Bredow, T. (2013). Consistent Gaussian Basis Sets of Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. Journal of Computational Chemistry, 34, 451–459. DOI: 10.1002/jcc.2315323115105 Open DOISearch in Google Scholar

31. Gryaznov, D., Blokhin, E., Sorokine, A., Kotomin, E.A., Evarestov, R.A., Bussmann-Holder, A., & Maier, J. (2013). A Comparative Ab Initio Thermodynamic Study of Oxygen Vacancies in ZnO and SrTiO3: Emphasis on Phonon Contribution. The Journal of Physical Chemistry C, 117, 13776–13784. DOI: 10.1021/jp400609e Open DOISearch in Google Scholar

32. Monkhorst, H.J., & Pack, J.D. (1976). Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188–5192. DOI: 10.1103/PhysRevB.13.5188 Open DOISearch in Google Scholar

33. He, H. (2020) Metal Oxide Semiconductors and Conductors. Solution Processed Metal Oxide Thin Films for Electronic Applications, Elsevier, 7–30.10.1016/B978-0-12-814930-0.00002-5 Search in Google Scholar

34. Roessler, D., & Walker, W. (1967). Electronic Spectrum and Ultraviolet Optical Properties of Crystalline MgO. Physical Review, 159, 733. DOI: 10.1103/PhysRev.159.733 Open DOISearch in Google Scholar

35. Gorczyca, I., Wierzbowska, M., Jarosz, D., Domagala, J., Reszka, A., Dang, D.L.S., … & Teisseyre, H. (2020). Rocksalt ZnMgO Alloys for Ultraviolet Applications: Origin of Band-Gap Fluctuations and Direct-Indirect Transitions. Physical Review B, 101, 245202. DOI: 10.1103/PhysRevB.101.245202 Open DOISearch in Google Scholar

eISSN:
2255-8896
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics