Otwarty dostęp

Perovskite CH3NH3PbI3–XClx Solar Cells. Experimental Study of Initial Degradation Kinetics and Fill Factor Spectral Dependence


Zacytuj

1. Kaulachs, I., Ivanova, A., Holsts, M., Roze, A., Flerov, A., Tokmakov, A., Mihailovs, I., & Rutkis, M. (2020). Perovskite CH3NH3PbI3–xClx Solar Cells And Their Degradation (Part 1: A Short Review). Latv. J. Phys. Tech. Sci. 2021, 1, 44-52. DOI: 10.2478/lpts-2021-0005.10.2478/lpts-2021-0005Search in Google Scholar

2. Ivanova, A., Tokmakov, A., Lebedeva, K. Roze, M., & Kaulachs, I. (2017). Influence of the Preparation Method on Planar Perovskite CH3NH3PbI3–xClx Solar Cell Performance and Hysteresis. Latv. J. Phys. Tech. Sci., 54, 58–68. DOI: 10.1515/lpts-2017-0027.10.1515/lpts-2017-0027Search in Google Scholar

3. Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., … & Huang, J. (2014). Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy Environ. Sci., 7, 2619–2623. DOI: 10.1039/C4EE01138D.10.1039/C4EE01138DSearch in Google Scholar

4. Seo, Y.-H., Kim, E.-C., Cho, S.-P., Kim, S.-S., & Na, S.-I. (2017). High-Performance Planar Perovskite Solar Cells: Influence of Solvent upon Performance. Appl. Mater. Today, 9, 598–604. DOI: 10.1016/j. apmt.2017.11.003.10.1016/j.apmt.2017.11.003Search in Google Scholar

5. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., & Huang, J. (2014). Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nat. Commun., 5, 5784. DOI: 10.1038/ncomms6784.10.1038/ncomms678425503258Search in Google Scholar

6. Lopez-Varo, P., Jiménez-Tejada, J.A., García-Rosell, M., Ravishankar, S., Garcia-Belmonte, G., Bisquert, J., & Almora, O. (2018). Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment. Adv. Energy Mater., 8, 1702772. DOI: 10.1002/aenm.201702772.10.1002/aenm.201702772Search in Google Scholar

7. Wang, Q., Shao, Y., Dong, Q., Xiao, Z., Yuan, Y., & Huang, J. (2014). Large Fill-Factor Bilayer Iodine Perovskite Solar Cells Fabricated by a Low-Temperature Solution-Process. Energy Environ. Sci., 7, 2359–2365. DOI: 10.1039/C4EE00233D.10.1039/C4EE00233DSearch in Google Scholar

8. Kaulachs, I., Muzikante, I., Gerca, L., Shlihta, G., Shipkovs, P., Grehovs, V., … & Ivanova, A. (2012). Electrodes for GaOHPc:PCBM/P3HT:PCBM Bulk Heterojunction Solar Cell. Chem. Phys., 405, 46–51. DOI: 10.1016/j.chemphys.2012.06.007.10.1016/j.chemphys.2012.06.007Search in Google Scholar

9. Kaulachs, I., & Silinsh, E. (1994). Molecular Triplet Exciton Generation via Optical Charge Transfer States in Α-Metalfree Phthalocyanine, Studied by Magnetic Field Effects. Latv. J. Phys. Tech. Sci., 5, 12–22.Search in Google Scholar

10. Shahbazi, M., & Wang, H. (2016). Progress in Research on the Stability of Organometal Perovskite Solar Cells, Sol. Energy., 123, 74–87. DOI: 10.1016/j.solener.2015.11.008.10.1016/j.solener.2015.11.008Search in Google Scholar

11. Song, Z., Abate, A., Watthage, S.C., Liyanage, G.K., Phillips, A.B., Steiner, U., … & Heben, M.J. (2016). Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System. Adv. Energy Mater., 6, 1600846. DOI: 10.1002/aenm.201600846.10.1002/aenm.201600846Search in Google Scholar

12. Wang, Q., Chen, B., Liu, Y., Deng, Y., Bai, Y., Dong, Q., & Huang, J. (2017). Scaling Behavior of Moisture-Induced Grain Degradation in Polycrystalline Hybrid Perovskite Thin Films. Energy Environ. Sci., 10, 516–522. DOI: 10.1039/C6EE02941H.10.1039/C6EE02941HSearch in Google Scholar

13. Wang, D., Wright, M., Elumalai, N.K., & Uddin, A. (2016). Stability of Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells, 147, 255–275. DOI: 10.1016/j. solmat.2015.12.025.10.1016/j.solmat.2015.12.025Search in Google Scholar

14. Zhou, W., Zhao, Y., Shi, C., Huang, H., Wei, J., Fu, R., ... & Zhao, Q. (2016). Reversible Healing Effect of Water Molecules on Fully Crystallized Metal–Halide Perovskite Film. J. Phys. Chem. C., 120, 4759–4765. DOI: 10.1021/acs.jpcc.5b11465.10.1021/acs.jpcc.5b11465Search in Google Scholar

15. Eperon, G.E., Habisreutinger, S.N., Leijtens, T., Bruijnaers, B.J., van Franeker, J.J., DeQuilettes, D.W., … & Snaith, H.J. (2015). The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. ACS Nano., 9, 9380–9393. DOI: 10.1021/acsnano.5b03626.10.1021/acsnano.5b0362626247197Search in Google Scholar

16. Zhao, D., Sexton, M., Park, H.-Y., Baure, G., Nino, J.C., & So, F. (2015). High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Adv. Energy Mater., 5, 1401855. DOI: 10.1002/aenm.201401855.10.1002/aenm.201401855Search in Google Scholar

17. Shi, Z., & Jayatissa, A. (2018). Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods. Materials (Basel), 11, 729. DOI: 10.3390/ma11050729.10.3390/ma11050729597810629734667Search in Google Scholar

18. Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y., & Huang, J. (2014). Qualifying Composition Dependent p and n Self-Doping in CH3NH3PbI3. Appl. Phys. Lett., 105, 163508. DOI: 10.1063/1.4899051.10.1063/1.4899051Search in Google Scholar

19. Chen, Q., Zhou, H., Song, T.-B., Luo, S., Hong, Z., Duan, H.-S., … & Yang, Y. (2014). Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Lett., 14, 4158–4163. DOI: 10.1021/nl501838y.10.1021/nl501838y24960309Search in Google Scholar

20. Yang, Y., Ostrowski, D.P., France, R.M., Zhu, K., van de Lagemaat, J., Luther, J.M., & Beard, M.C. (2016). Observation of a Hot-Phonon Bottleneck in Lead-Iodide Perovskites. Nat. Photonics, 10, 53–59. DOI: 10.1038/nphoton.2015.213.10.1038/nphoton.2015.213Search in Google Scholar

21. Niesner, D., Zhu, H., Miyata, K., Joshi, P.P., Evans, T.J.S., Kudisch, B.J., … & Zhu, X.-Y. (2016). Persistent Energetic Electrons in Methylammonium Lead Iodide Perovskite Thin Films. J. Am. Chem. Soc., 138, 15717–15726. DOI: 10.1021/jacs.6b08880.10.1021/jacs.6b0888027934024Search in Google Scholar

22. Yang, J., Wen, X., Xia, H., Sheng, R., Ma, Q., Kim, J., … & Conibeer, G. (2017). Acoustic-Optical Phonon Up-Conversion and Hot-Phonon Bottleneck in Lead-Halide Perovskites. Nat. Commun., 8, 14120. DOI: 10.1038/ncomms14120.10.1038/ncomms14120526388528106061Search in Google Scholar

23. Zhu, H., Miyata, K., Fu, Y., Wang, J., Joshi, P.P., Niesner, D., ... & Zhu, X.-Y. (2016). Screening in Crystalline Liquids Protects Energetic Carriers in Hybrid Perovskites. Science, 353, 1409–1413. DOI: 10.1126/science.aaf9570.10.1126/science.aaf957027708033Search in Google Scholar

24. Bretschneider, S.A., Laquai, F., & Bonn, M. (2017). Trap-Free Hot Carrier Relaxation in Lead–Halide Perovskite Films. J. Phys. Chem. C., 121, 11201–11206. DOI: 10.1021/acs.jpcc.7b03992.10.1021/acs.jpcc.7b03992Search in Google Scholar

25. Guo, Z., Wan, Y., Yang, M., Snaider, J., Zhu, K., & Huang, L. (2017). Long-Range Hot-Carrier Transport in Hybrid Perovskites Visualized by Ultrafast Microscopy. Science, 356, 59–62. DOI: 10.1126/science. aam7744.10.1126/scienceSearch in Google Scholar

26. Frost, J.M., Whalley, L.D., & Walsh, A. (2017). Slow Cooling of Hot Polarons in Halide Perovskite Solar Cells. ACS Energy Lett., 2, 2647–2652. DOI: 10.1021/acsenergylett.7b00862.10.1021/acsenergylett.7b00862572746829250603Search in Google Scholar

eISSN:
0868-8257
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics