Accès libre

Perovskite CH3NH3PbI3–XClx Solar Cells. Experimental Study of Initial Degradation Kinetics and Fill Factor Spectral Dependence

À propos de cet article

Citez

1. Kaulachs, I., Ivanova, A., Holsts, M., Roze, A., Flerov, A., Tokmakov, A., Mihailovs, I., & Rutkis, M. (2020). Perovskite CH3NH3PbI3–xClx Solar Cells And Their Degradation (Part 1: A Short Review). Latv. J. Phys. Tech. Sci. 2021, 1, 44-52. DOI: 10.2478/lpts-2021-0005.10.2478/lpts-2021-0005Search in Google Scholar

2. Ivanova, A., Tokmakov, A., Lebedeva, K. Roze, M., & Kaulachs, I. (2017). Influence of the Preparation Method on Planar Perovskite CH3NH3PbI3–xClx Solar Cell Performance and Hysteresis. Latv. J. Phys. Tech. Sci., 54, 58–68. DOI: 10.1515/lpts-2017-0027.10.1515/lpts-2017-0027Search in Google Scholar

3. Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., … & Huang, J. (2014). Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy Environ. Sci., 7, 2619–2623. DOI: 10.1039/C4EE01138D.10.1039/C4EE01138DSearch in Google Scholar

4. Seo, Y.-H., Kim, E.-C., Cho, S.-P., Kim, S.-S., & Na, S.-I. (2017). High-Performance Planar Perovskite Solar Cells: Influence of Solvent upon Performance. Appl. Mater. Today, 9, 598–604. DOI: 10.1016/j. apmt.2017.11.003.10.1016/j.apmt.2017.11.003Search in Google Scholar

5. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., & Huang, J. (2014). Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nat. Commun., 5, 5784. DOI: 10.1038/ncomms6784.10.1038/ncomms678425503258Search in Google Scholar

6. Lopez-Varo, P., Jiménez-Tejada, J.A., García-Rosell, M., Ravishankar, S., Garcia-Belmonte, G., Bisquert, J., & Almora, O. (2018). Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment. Adv. Energy Mater., 8, 1702772. DOI: 10.1002/aenm.201702772.10.1002/aenm.201702772Search in Google Scholar

7. Wang, Q., Shao, Y., Dong, Q., Xiao, Z., Yuan, Y., & Huang, J. (2014). Large Fill-Factor Bilayer Iodine Perovskite Solar Cells Fabricated by a Low-Temperature Solution-Process. Energy Environ. Sci., 7, 2359–2365. DOI: 10.1039/C4EE00233D.10.1039/C4EE00233DSearch in Google Scholar

8. Kaulachs, I., Muzikante, I., Gerca, L., Shlihta, G., Shipkovs, P., Grehovs, V., … & Ivanova, A. (2012). Electrodes for GaOHPc:PCBM/P3HT:PCBM Bulk Heterojunction Solar Cell. Chem. Phys., 405, 46–51. DOI: 10.1016/j.chemphys.2012.06.007.10.1016/j.chemphys.2012.06.007Search in Google Scholar

9. Kaulachs, I., & Silinsh, E. (1994). Molecular Triplet Exciton Generation via Optical Charge Transfer States in Α-Metalfree Phthalocyanine, Studied by Magnetic Field Effects. Latv. J. Phys. Tech. Sci., 5, 12–22.Search in Google Scholar

10. Shahbazi, M., & Wang, H. (2016). Progress in Research on the Stability of Organometal Perovskite Solar Cells, Sol. Energy., 123, 74–87. DOI: 10.1016/j.solener.2015.11.008.10.1016/j.solener.2015.11.008Search in Google Scholar

11. Song, Z., Abate, A., Watthage, S.C., Liyanage, G.K., Phillips, A.B., Steiner, U., … & Heben, M.J. (2016). Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System. Adv. Energy Mater., 6, 1600846. DOI: 10.1002/aenm.201600846.10.1002/aenm.201600846Search in Google Scholar

12. Wang, Q., Chen, B., Liu, Y., Deng, Y., Bai, Y., Dong, Q., & Huang, J. (2017). Scaling Behavior of Moisture-Induced Grain Degradation in Polycrystalline Hybrid Perovskite Thin Films. Energy Environ. Sci., 10, 516–522. DOI: 10.1039/C6EE02941H.10.1039/C6EE02941HSearch in Google Scholar

13. Wang, D., Wright, M., Elumalai, N.K., & Uddin, A. (2016). Stability of Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells, 147, 255–275. DOI: 10.1016/j. solmat.2015.12.025.10.1016/j.solmat.2015.12.025Search in Google Scholar

14. Zhou, W., Zhao, Y., Shi, C., Huang, H., Wei, J., Fu, R., ... & Zhao, Q. (2016). Reversible Healing Effect of Water Molecules on Fully Crystallized Metal–Halide Perovskite Film. J. Phys. Chem. C., 120, 4759–4765. DOI: 10.1021/acs.jpcc.5b11465.10.1021/acs.jpcc.5b11465Search in Google Scholar

15. Eperon, G.E., Habisreutinger, S.N., Leijtens, T., Bruijnaers, B.J., van Franeker, J.J., DeQuilettes, D.W., … & Snaith, H.J. (2015). The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. ACS Nano., 9, 9380–9393. DOI: 10.1021/acsnano.5b03626.10.1021/acsnano.5b0362626247197Search in Google Scholar

16. Zhao, D., Sexton, M., Park, H.-Y., Baure, G., Nino, J.C., & So, F. (2015). High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Adv. Energy Mater., 5, 1401855. DOI: 10.1002/aenm.201401855.10.1002/aenm.201401855Search in Google Scholar

17. Shi, Z., & Jayatissa, A. (2018). Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods. Materials (Basel), 11, 729. DOI: 10.3390/ma11050729.10.3390/ma11050729597810629734667Search in Google Scholar

18. Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y., & Huang, J. (2014). Qualifying Composition Dependent p and n Self-Doping in CH3NH3PbI3. Appl. Phys. Lett., 105, 163508. DOI: 10.1063/1.4899051.10.1063/1.4899051Search in Google Scholar

19. Chen, Q., Zhou, H., Song, T.-B., Luo, S., Hong, Z., Duan, H.-S., … & Yang, Y. (2014). Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Lett., 14, 4158–4163. DOI: 10.1021/nl501838y.10.1021/nl501838y24960309Search in Google Scholar

20. Yang, Y., Ostrowski, D.P., France, R.M., Zhu, K., van de Lagemaat, J., Luther, J.M., & Beard, M.C. (2016). Observation of a Hot-Phonon Bottleneck in Lead-Iodide Perovskites. Nat. Photonics, 10, 53–59. DOI: 10.1038/nphoton.2015.213.10.1038/nphoton.2015.213Search in Google Scholar

21. Niesner, D., Zhu, H., Miyata, K., Joshi, P.P., Evans, T.J.S., Kudisch, B.J., … & Zhu, X.-Y. (2016). Persistent Energetic Electrons in Methylammonium Lead Iodide Perovskite Thin Films. J. Am. Chem. Soc., 138, 15717–15726. DOI: 10.1021/jacs.6b08880.10.1021/jacs.6b0888027934024Search in Google Scholar

22. Yang, J., Wen, X., Xia, H., Sheng, R., Ma, Q., Kim, J., … & Conibeer, G. (2017). Acoustic-Optical Phonon Up-Conversion and Hot-Phonon Bottleneck in Lead-Halide Perovskites. Nat. Commun., 8, 14120. DOI: 10.1038/ncomms14120.10.1038/ncomms14120526388528106061Search in Google Scholar

23. Zhu, H., Miyata, K., Fu, Y., Wang, J., Joshi, P.P., Niesner, D., ... & Zhu, X.-Y. (2016). Screening in Crystalline Liquids Protects Energetic Carriers in Hybrid Perovskites. Science, 353, 1409–1413. DOI: 10.1126/science.aaf9570.10.1126/science.aaf957027708033Search in Google Scholar

24. Bretschneider, S.A., Laquai, F., & Bonn, M. (2017). Trap-Free Hot Carrier Relaxation in Lead–Halide Perovskite Films. J. Phys. Chem. C., 121, 11201–11206. DOI: 10.1021/acs.jpcc.7b03992.10.1021/acs.jpcc.7b03992Search in Google Scholar

25. Guo, Z., Wan, Y., Yang, M., Snaider, J., Zhu, K., & Huang, L. (2017). Long-Range Hot-Carrier Transport in Hybrid Perovskites Visualized by Ultrafast Microscopy. Science, 356, 59–62. DOI: 10.1126/science. aam7744.10.1126/scienceSearch in Google Scholar

26. Frost, J.M., Whalley, L.D., & Walsh, A. (2017). Slow Cooling of Hot Polarons in Halide Perovskite Solar Cells. ACS Energy Lett., 2, 2647–2652. DOI: 10.1021/acsenergylett.7b00862.10.1021/acsenergylett.7b00862572746829250603Search in Google Scholar

eISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics