1. bookTom 66 (2022): Zeszyt 1 (January 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1804-1213
Pierwsze wydanie
03 Apr 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
access type Otwarty dostęp

Corrosion and tribological behaviour of Friction Stir Processed AA2024-T351 alloy

Data publikacji: 07 Jul 2022
Tom & Zeszyt: Tom 66 (2022) - Zeszyt 1 (January 2022)
Zakres stron: 81 - 95
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1804-1213
Pierwsze wydanie
03 Apr 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

AA2024-T351, a heat treatable aluminum alloy, has a high strength to weight ratio and good fracture resistance and has application mainly in the aircraft and aerospace sector. However, the alloy is susceptible to high corrosion because of the secondary phases (Al2Cu) present in the matrix. With an objective to increase the corrosion and wear resistance, Friction Stir Processing is applied to engineer the morphology and dispersion of the Al2Cu phase in the alloy. The friction stir processing trials are performed by varying the tool rotation speed, tool traverse speed, and shoulder diameter, as the properties of the friction stir processed region depend on the proper selection of process parameters. A hybrid linear-radial basis function model is developed to explore the effect of tool rotation speed, tool traverse speed, and shoulder diameter on the grain size, microhardness, corrosion rate, wear rate, and corrosion potential of the friction stir processed AA2024-T351 alloy. The predominant corrosion mechanism and wear regimes in AA2024-T351 alloy are understood from the characterization study on the surface morphology and elemental analysis of the corroded and worn specimens. The optimum friction stir processing parameters that improve the grain refinement, microhardness, corrosion resistance and wear resistance of AA2024-T351 alloy are established.

1. M. Carvalho da Cunha and M. S. Fernandes de Lima, “The influence of laser surface treatment on the fatigue crack growth of AA 2024-T3 aluminum alloy alclad sheet,” Surf. Coat. Technol. 2017, 329, 244-249. doi: 10.1016/j.surfcoat.2017.08.052. Otwórz DOISearch in Google Scholar

2. L. Yuan, W. Shi, R. Shivpuri, F. Xu, and D. Shan, “Increased hot forgeability of 2024Al/Al18B4O33w whisker composites at high strain rates,” J Mater Process Technol 2017, 243, 456-464. doi: 10.1016/j.jmatprotec.2017.01.011. Otwórz DOISearch in Google Scholar

3. T. L. P. Galvão et al., “Improving the functionality and performance of AA2024 corrosion sensing coatings with nanocontainers,” Chem. Eng. J. 2018, 341, 526-538. doi: 10.1016/j.cej.2018.02.061. Otwórz DOISearch in Google Scholar

4. H. Zhu et al., “Strengthening mechanism in laser-welded 2219 aluminium alloy under the cooperative effects of aging treatment and pulsed electromagnetic loadings,” Materials Science and Engineering: A 2018, 714, 124-139.10.1016/j.msea.2017.12.081 Search in Google Scholar

5. A. Ashwin, R. H. Lakshman, C. C. Swaroop, M. Vignesh, R. V. Vignesh, and R. Padmanaban, “Predicting the Wear Rate of Aluminum Alloy AA2024-T351 using Hybrid Linear function and Radial Basis Function,” in IOP Conference Series: Materials Science and Engineering 2019, 561 (1), p. 012046.10.1088/1757-899X/561/1/012046 Search in Google Scholar

6. S. V. Kozhukharov and C. A. Girginov, “Comparative electrochemical and topographical elucidation of Anodic Aluminum Oxide (AAO) layers formed on technically pure aluminum (TPA) and AA2024-T3 aircraft alloy,” Bulg. Chem. Commun. 2018, 50, 13-21. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048856864&partnerID=40&md5=a07b531d0f43a4c49218f655a3da9380 (accessed June 1st 2022) Search in Google Scholar

7. P. C. Suarez-Martinez, J. Robinson, H. An, R. C. Nahas, D. Cinoman, and J. L. Lutkenhaus, “Polymer-clay nanocomposite coatings as efficient, environment-friendly surface pretreatments for aluminum alloy 2024-T3,” Electrochim Acta 2018, 260, 73-81. doi: 10.1016/j.electacta.2017.11.046. Otwórz DOISearch in Google Scholar

8. K. A. Kumar, S. Murigendrappa, and H. Kumar, “A bottom- up optimization approach for friction stir welding parameters of dissimilar Aa2024-T351 and Aa7075-T651 alloys,” Journal of Materials Engineering and Performance 2017, 26 (7), 3347-3367.10.1007/s11665-017-2746-z Search in Google Scholar

9. J. R. Davis, J. R. Davis, Ed. Corrosion of Aluminum and Aluminum Alloys. A S M International, 1999.10.31399/asm.tb.caaa.9781627082990 Search in Google Scholar

10. G. F. Mars, Corrosion Engineering, 3 ed. New York: Mc Graw-Hill Book Company, 2010. Search in Google Scholar

11. N. A. North and I. D. MacLeod, “4 - Corrosion of metals - Pearson, Colin,” in Conservation of Marine Archaeological Objects. Oxford: Butterworth-Heinemann, 1987, pp. 68-98.10.1016/B978-0-408-10668-9.50010-1 Search in Google Scholar

12. J. C. Bailey, F. C. Porter, and A. W. Pearson, “4.1 - Aluminium and Aluminium Alloys A2 - Shreir, L.L,” in Corrosion: Newnes, 1976, pp. 4:3-4:32.10.1016/B978-0-408-00109-0.50042-0 Search in Google Scholar

13. R. Oltra, L. Colard, and R. Bonzom, “A novel methodology to study localized corrosion under atmospheric simulated corrosion conditions: Toward a continuous monitoring of the corrosion damage on AA2024,” Mater. Corros. 2017, 68 (3), 311-315. doi: 10.1002/maco.201609151. Otwórz DOISearch in Google Scholar

14. B. G. Prakashaiah, D. Vinaya Kumara, A. Anup Pandith, A. Nityananda Shetty, and B. E. Amitha Rani, “Corrosion inhibition of 2024-T3 aluminum alloy in 3.5% NaCl by thiosemicarbazone derivatives,” Corros. Sci. 2018, 136, 326-338. doi: 10.1016/j.corsci.2018.03.021. Otwórz DOISearch in Google Scholar

15. R. Vaira Vignesh, R. Padmanaban, and M. Datta, “Influence of FSP on the microstructure, microhardness, intergranular corrosion susceptibility and wear resistance of AA5083 alloy,” Tribology-Materials, Surfaces & Interfaces 2018, 12 (3), 157-169.10.1080/17515831.2018.1483295 Search in Google Scholar

16. R. Khatami, A. Fattah-Alhosseini, Y. Mazaheri, M. K. Keshavarz, and M. Haghshenas, “Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding,” Int J Adv Manuf Technol 2017, 93 (1-4), 681-689. doi: 10.1007/s00170-017-0547-z. Otwórz DOISearch in Google Scholar

17. M. Vigneshwar, S. T. Selvamani, P. Hariprasath, and K. Palanikumar, “Analysis of Mechanical, Metallurgical and Fatigue Behavior of Friction Welded AA6061-AA2024 Dissimilar Aluminum Alloys in Optimized Condition,” 2018, vol. 5: Elsevier Ltd, 2nd ed., pp. 7853-7863, doi: 10.1016/j.matpr.2017.11.466. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045996397&doi=10.1016%2fjmatpr.2017.11.466&partnerID=40&md5=9dcbcebb45004d57e80c90c987bf9ac9 (accessed June 1st 2022) Otwórz DOISearch in Google Scholar

18. Z. Wang et al., “Microstructure and properties of friction stir welded 2219 Aluminum alloy under heat treatment and electromagnetic forming process,” Metals 2018, 8 (5), 305.10.3390/met8050305 Search in Google Scholar

19. R. S. Mishra, P. S. De, and N. Kumar, “Fundamental Physical Metallurgy Background for FSW/P,” in Friction Stir Welding and Processing: Science and Engineering. Cham: Springer International Publishing, 2014, pp. 59-93. Search in Google Scholar

20. Z. Ma, “Friction stir processing technology: a review,” Metallurgical and Materials Transactions A 2008, 39 (3), 642-658.10.1007/s11661-007-9459-0 Search in Google Scholar

21. R. S. Mishra and Z. Ma, “Friction stir welding and processing,” Materials Science and Engineering: R: Reports 2005, 50 (1), 1-78.10.1016/j.mser.2005.07.001 Search in Google Scholar

22. S. Mehrez, M. Paidar, K. Cooke, R. V. Vignesh, O. O. Ojo, and B. Babaei, “A comparative study on weld characteristics of AA5083-H112 to AA6061-T6 sheets produced by MFSC and FSSW processes,” Vacuum, Article 2021, 190, ArtNo. 110298. doi: 10.1016/j.vacuum.2021.110298. Otwórz DOISearch in Google Scholar

23. R. Premkumar, R. V. Vignesh, R. Padmanaban, M. Govindaraju, and R. Santhi, “Investigation on the microstructure, microhardness, and tribological behavior of AA1100-hBN surface composite,” Koroze a Ochrana Materialu 2021, 65 (1), 1-11. doi: 10.2478/kom-2021-0001. Otwórz DOISearch in Google Scholar

24. I. El-Mahallawi, M. M. Z. Ahmed, A. A. Mahdy, A. M. M. Abdelmotagaly, W. Hoziefa, and M. Refat. Effect of Heat Treatment on Friction-Stir-Processed Nanodispersed AA7075 and 2024 Al Alloys, Minerals, Metals and Materials Series, pp. 297-309, 2017.10.1007/978-3-319-52383-5_29 Search in Google Scholar

25. J. John, S. P. Shanmughanatan, and M. B. Kiran, “Effect of tool geometry on microstructure and mechanical Properties of friction stir processed AA2024-T351 aluminium alloy,” in Materials Today: Proceedings, 2018, vol. 5: Elsevier Ltd, 1st ed., pp. 2965-2979, doi: 10.1016/j.matpr.2018.01.095. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042438080&doi=10.1016%2fj.r.2018.01.095&partnerID=40&md5=4f6f04bfcb50a30c689a7bcb7175958d (accessed June 1st 2022) Otwórz DOISearch in Google Scholar

26. T. A. Kalashnikova et al., “AA2024 microstructural evolution after bidirectional friction stir processing,” 2017, American Institute of Physics Inc., doi: 10.1063/1.5013759. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038573778&doi=10.1063%2f1.5013759&partnerID=40&md5=e4512823a758b8fd95bc62066f880e2d (accessed June 1st 2022) Otwórz DOISearch in Google Scholar

27. R. V. Vignesh, R. Padmanaban, and M. Govindaraju, “Investigations on the Surface topography, Corrosion behavior, and Biocompatibility of Friction Stir Processed Magnesium Alloy AZ91D,” Surface Topography: Metrology and Properties 2019, 7 (2), 025020.10.1088/2051-672X/ab269c Search in Google Scholar

28. R. V. Vignesh, R. Padmanaban, M. Govindaraju, and G. S. Priyadharshini, “Mechanical properties and corrosion behaviour of AZ91D-HAP surface composites fabricated by friction stir processing,” Materials Research Express 2019, 6 (8), 085401.10.1088/2053-1591/ab1ded Search in Google Scholar

29. R. Acuña, M. Cristóbal, C. Abreu, and M. Cabeza, “Microstructure and Wear Properties of Surface Composite Layer Produced by Friction Stir Processing (FSP) in AA2024-T351 Aluminum Alloy,” Metallurgical and Materials Transactions A 2019, 50 (6), 2860-2874.10.1007/s11661-019-05172-6 Search in Google Scholar

30. M. Paidar, K. Tahani, R. Vaira Vignesh, O. O. Ojo, H. R. Ezatpour, and A. Moharrami, “Modified friction stir clinching of 2024-T3 to 6061-T6 aluminium alloy: Effect of dwell time and precipitation-hardening heat treatment,” Mater. Sci. Eng. A 2020, 791, ArtNo. 139734. doi: 10.1016/j.msea.2020.139734. Otwórz DOISearch in Google Scholar

31. G. Suganya Priyadharshini et al., “Influence of tool traverse speed on microstructure and mechanical properties of CuNi/B4C surface composites,” Trans Inst Met Finish 2021, 99 (1), 38-45. doi: 10.1080/00202967.2020.1846360. Otwórz DOISearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo