1. bookTom 66 (2022): Zeszyt 1 (January 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1804-1213
Pierwsze wydanie
03 Apr 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Defects on silver based coatings

Data publikacji: 07 Jul 2022
Tom & Zeszyt: Tom 66 (2022) - Zeszyt 1 (January 2022)
Zakres stron: 72 - 80
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1804-1213
Pierwsze wydanie
03 Apr 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

New trends in the automotive and construction industries are leading manufacturers to develop new materials with added value. In this article, we deal with the introduction of such a material, namely a silver-based emission coating, which is used in both architecture and the automotive industry. Silver-based coating thus makes it possible to increase the driver’s comfort, or to increase the comfort of working in the office on hot steamy days. This coating changes the transmittance of IR radiation from or to the building, or from or to the car. The coating is based primarily on the presence of layers of silver, which are able to provide the primary functions of modulation of incoming and outgoing radiation. Silver-based coatings can also be used to heat, for example, car windshields. The production of a silver-based coating is very demanding and sensitive to the formation of coating defects. In this article, we discuss common coating defects and discuss their possible origins.

1. Nikitenkov N., Modern Technologies for Creating the Thinfilm Systems and Coatings. IntechOpen: Moscow, 2017; 418–420, doi 10.5772/63326. Otwórz DOISearch in Google Scholar

2. Maschwitz P., Coster D., Decroupet D., Low emisivity coating with low solar heat gain coefficient, enhanced chemical and mechanical poperties and method of making the same. 2018, EP1881893 (B1). Search in Google Scholar

3. Jell B. P., Kalnaes S. E., Gao T., Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives. Energy and Buildings 2015, 96, 329 – 356. doi 10.1016/j.enbuild.2015.03.024. Otwórz DOISearch in Google Scholar

4. Miyazaki M., Ando E., A low emissivity film. 1991, EP 0698585A1. https://patents.google.com/patent/EP0698585A1/en. (accessed June 1st 2022) Search in Google Scholar

5. Castaldo A., Ferrara M., Highly performing low emission sputtered coatings stable in air for energy saving glazing units. SMARTCASE, 2018, https://www.researchgate.net/publication/325756672_Highly_performing_low_emission_sputtered_coatings_stable_in_air_for_energy_saving_glazing_units. (accessed June 1st 2022) Search in Google Scholar

6. Amirkhani S., Bahadori-Jahromi A., Mylona A., Godfrey P., Cook D., Impact of Low-E Window Films on Energy Consumption and CO2 Emissions of an Existing UK Hotel Building. Sustainability 2019, 11 (16), 4265. doi 10.3390/su11164265. Otwórz DOISearch in Google Scholar

7. Pilkington L. Review lecture: The float glass process. Proc Roy Soc Lond A. 1969, 314, 275-25. doi 10.1098/rspa.1969.0212. Otwórz DOISearch in Google Scholar

8. Baptista A., Silva F., Porteiro J., Miguez J., Pinto G., Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8 (11), 402. doi 10.3390/coatings8110402. Otwórz DOISearch in Google Scholar

9. Rossnagel S. M., Thin film deposition with physical vapor deposition and related technologies. Journal of Vacuum Science & Technology A 2003, 21, 74. doi 10.1116/1.1600450. Otwórz DOISearch in Google Scholar

10. Moghaddam S. A., Mattsson M., Ameen A., Akander J., Da Silva M. G., Simoes N., Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate. Energies 2021, 14 (22), 7854. doi 10.3390/en14227584. Otwórz DOISearch in Google Scholar

11. Jun X., Yibing L., Manufacturing of Automotive Laminated Windshields, Impact Behavior and Pedestrian Protection of Automotive Laminated Windshield. Springer 2019, 21-37.10.1007/978-981-13-2441-3_2 Search in Google Scholar

12. Goodwin C. J., Ridealgh J. A., Cheetham K. J., Heat Treatable Coated Glass Pane. 2018, https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20181018&DB=EPODOC&CC=US&NR=2018297891A1. (accessed June 1st 2022) Search in Google Scholar

13. Vakkuri E. Y., Kaonpää A., Salonen T., Nikkanen T., Method and furnace for bending glass sheets. 1992, https://patents.google.com/patent/EP0592862A1. (accessed June 1st 2022) Search in Google Scholar

14. Malecka J. K., Kelly P. J., West G., Clarke G. C. B., Ridealgh J. A., Almtoft K. P., Greer A. L., Barber Z. H., Investigation of Silver Diffusion in TiO2/Ag/TiO2 Coatings. Acta materialia 2014, 66, 396-404, doi 10.1016/J.ACTAMAT.2013.11.030. Otwórz DOISearch in Google Scholar

15. Satoshi T. Oxygen and silver diffusion into float glass. Journal of Non-Crystalline Solids 2006, 352 (36), 3910–3913. doi 10.1016/j.jnoncrysol.2006.06.010. Otwórz DOISearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo