Zacytuj

Abbott, B.W., Bishop, K., Zarnetske, J.P., Minaudo, C., Chapin III, F.S., Krause, S., Hannah, D.M., Conner, L., Ellison, D., Godsey, S.E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R.J., Hampton, T., Gu, S., Buhman, M., Sayedi, S.S., Ursache, O., Chapin, M., Henderson, K.D., Pinay, G., 2019. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci., 12, 533–540, https://doi.org/10.1038/s41561-019-0374-ySearch in Google Scholar

Adam, J., Lettenmaier, P., 2003. Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257–4270.Search in Google Scholar

Berghuijs, W. R., Woods, R. A., Hrachowitz, M., 2014. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Climate Change, 4, 583–586. https://doi.org/10.1038/nclimate2246.Search in Google Scholar

Blaškovičová, L., Jeneiová, K., Poórová, J., et al., 2019. Determination of hydrological characteristics, sub-task: Hydrological Drought Assessment - Assessment of changes and trends of monthly and annual flow rates. Unpublished report, Slovak Hydrometeorological Institute, 64 pp.Search in Google Scholar

Blauhut, V., Stoelzle, M., Ahopelto, L., Brunner, M., Teutschbein, C., Wendt, D., Akstinas, V., Bakke, S., Barker, L., Bartošová, L., Briede, A., Cammalleri, C., Cindric, K., De Stefano, L., Fendekova, M., Finger, D., Huysmans, M., Ivanov, M., Jaagus, J., Živković, N., 2022. Lessons from the 2018-2019 European droughts: a collective need for unifying drought risk management. Nat. Hazards Earth Sys. Sci., 22, 2201–2217. https://doi.org/10.5194/nhess-22-2201-2022Search in Google Scholar

Bonacci, O., Bonacci, D., Roje-Bonacci, T., Vrsalović, A., 2023. Proposal of a new method for drought analysis. J. Hydrol. Hydromech., 71, 100–110. https://doi.org/10.2478/johh-2022-0030Search in Google Scholar

Bonfils, C.J.W., Santer, B.D., Fyfe, J.C., Marvel, K., Phillips, T.J., Zimmerman, S.R.H., 2020. Human influence on joint changes in temperature, rainfall and continental aridity. Nat. Climate Change, 10, 726–731, https://doi.org/10.1038/s41558-020-0821-1.Search in Google Scholar

Bouchet, R.J., 1963. Evapotranspiration reelle, evapotranspiration potentielle, et production agricole. Annales Agronomae, 14, 743–824.Search in Google Scholar

Brutsaert, W., Parlange M.B., 1998. Hydrologic cycle explains the evaporation paradox. Nature, 396, 30. https://doi.org/10.1038/23845.Search in Google Scholar

Brutsaert, W., Stricker, H., 1979. An Advection–aridity approach to estimate actual regional evapotranspiration. Water Resour. Res., 15, 443–450. https://doi.org/10.1029/WR015i002p00443.Search in Google Scholar

Budyko, M.I. (Ed.), 1974. Climate and Life. International Geophysics book series, Academic Press NY and London, 18, 508 p. https://www.sciencedirect.com/bookseries/international-geophysics/vol/18/suppl/CSearch in Google Scholar

Cook, B.I., Mankin, J.S., Marvel, K., Williams, A.P., Smerdon, J.E., Anchukaitis, K.J., 2020. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future, 8, e2019EF001461. https://doi.org/10.1029/2019EF001461. Search in Google Scholar

Domokos, M., Sass, J., 1990. Long-term water balances for subcatchments and partial national areas in the Danube basin. J. Hydrol., 112, 267–292. https://doi.org/10.1016/0022-1694(90)90019-TSearch in Google Scholar

Duethmann, D., Blöschl, G., 2018. Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. Hydrol. Earth Syst. Sci., 22, 5143–5158. https://doi.org/10.5194/hess-22-5143-2018Search in Google Scholar

Ďurigová, M., Ballová, D., Hlavčová, K., 2019. Analyses of monthly discharges in Slovakia using hydrological exploratory methods and statistical methods. Slovak Journal of Civil Engineering, 27, 36–43. https://doi.org/10.2478/sjce-2019-0014 Search in Google Scholar

Fendeková, M., Blaškovičová, L., (Eds.), (Bochníček, O., Blaškovičová, L., Damborská, I., Fendek, M., Fendeková, M., Horvát, O., Pekárová, P., Slivová, V., Vrablíková, D., 2018a. Prognosis of hydrological drought development in Slovakia. 182 p.Search in Google Scholar

Fendeková, M., Gauster, T., Labudová, L., Vrablíková, D., Danáčová, Z., Fendek, M., Pekárová, P., 2018b. Analysing 21st century meteorological and hydrological drought events in Slovakia. J. Hydrol. Hydromech., 66, 393–403. https://doi.org/10.2478/johh-2018-0026Search in Google Scholar

Gan, G., Liu, Y., Sun, G., 2021. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth Sci. Rev., 212, 103451. https://doi.org/10.1016/j.earscirev.2020.103451Search in Google Scholar

Gao, H., Tang, Q., Ferguson, C.R., Wood, E.F., Lettenmaier, D.P., 2010. Estimating the water budget of major US river basins via remote sensing. Int. J. Remote Sens., 31, 3955–3978. https://doi.org/10.1080/01431161.2010.483488Search in Google Scholar

Garaj, M., Pekárová, P., Pekár, J., Miklánek, P., 2019. The changes of water balance in the Eastern Slovakia. IOP Conf. Ser.: Earth Environ. Sci., 362, 012014. https://iopscience.iop.org/article/10.1088/1755-1315/362/1/012014Search in Google Scholar

Gera, M., Damborská, I., Lapin, M., Melo, M., 2017. Climate changes in Slovakia: Analysis of past and present observations and scenarios of future developments. In: Negm, A., Zeleňáková, M. (Eds:) Water Resources in Slovakia: Part II. The Handbook of Environmental Chemistry, vol. 70. Springer, Cham. https://doi.org/10.1007/698_2017_157Search in Google Scholar

Halmová, D., Pekárová, P., Bačová Mitková, V., 2019. Long-term trend changes of monthly and extreme discharges for different time periods. Acta Hydrologica Slovaca, 20, 122–130. https://doi.org/10.31577/ahs-2019-0020.02.0014Search in Google Scholar

Halmová, D., Pekárová, P., Podolinská, J., Jeneiová, K., 2022. The assessment of changes in the long-term water balance in the Krupinica river basin for the period 1931–2020. Acta Hydrologica Slovaca, 23, 21–31, https://doi.org/10.31577/ahs-2022-0023.01.0003Search in Google Scholar

Hlavčová, K., Szolgay, J., Čunderlík, J., Parajka, J., Lapin, M., 1999. Impact of climate change on the hydrological regime of rivers in Slovakia. Publication of the Slovak Committee for Hydrology No. 3, Bratislava, 101 p.Search in Google Scholar

Hobbins, M.T., Ramírez, J.A., Brown, T.C., 2004. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett., 31, L13503. https://doi.org/10.1029/2004GL019846 Search in Google Scholar

Hobbins, M.T., Ramírez, J.A., Brown, T.C., Claessens, L.H., 2001. The complementary relationship in estimation of regional evapotranspiration: The complementary relationship areal evapotranspiration and advection-aridity models. Water Resour. Res., 37, 1367–1387. https://doi.org/10.1029/2000WR900358Search in Google Scholar

Holko, L., Danko, M., 2018. Basic components of the water balance of a mountain catchment - 30 years of measurements in the Jalovecký Creek catchment. In Hydrologický výskum v podmienkach prebiehajúcej klimatickej zmeny. Bratislava: Veda, 2018, 14–50.Search in Google Scholar

Holko, L., Sleziak, P., Danko, M., Bičárová, S., Pociask-Karteczka, J., 2020. Analysis of changes in hydrological cycle of a pristine mountain catchment. 1. Water balance components and snow cover. J. Hydrol. Hydromech., 68, 180–191. https://doi.org/10.2478/johh-2020-0010Search in Google Scholar

Huang, Y., Franssen, H. J., Herbst, M., Hirschi, M., Michel, D., Seneviratne, S.I., Teuling, A.J., Vogt, R., Detlef, S., Pütz, T., Vereecken, H., 2020. Evaluation of different methods for gap filling of long‐term actual evapotranspiration time series measured by lysimeters. Vadose Zone J., 19, e20020. https://doi.org/10.1002/vzj2.20020Search in Google Scholar

Kahler, D.M., Brutsaert, W., 2006. Complementary relatinship between daily evaporation in the environment and pan evaporation. Water Resour. Res., 42, W05413. https://doi:10.1029/2005WR004541.Search in Google Scholar

Keszeliová, A., Hlavčová, K., Danáčová, M., Danáčová, Z., Szolgay, J., 2021. Detection of changes in the hydrological balance in seven river basins along the Western Carpathians in Slovakia. Slovak Journal of Civil Engineering, 29, 49–60. https://doi.org/10.2478/sjce-2021-0027Search in Google Scholar

Keszeliová, A., Výleta, R., Danáčová, M., Hlavčová, K., Sleziak, P., Gribovszki, Z., Szolgay, J., 2022. Detection of changes in evapotranspiration on a catchment scale under changing climate conditions in selected river basins of Slovakia. Slovak Journal of Civil Engineering, 30, 55–63. https://doi.org/10.2478/sjce-2022-0029Search in Google Scholar

Konstantinov, A.P, Astachova, N.I., Levenko, A.A., 1971. Metody rascheta ispareniya s seľskochozyajstvennych polej (Methods of the evaporation from agricultural fields estimation). GIMIZ, Leningrad, 126 p.Search in Google Scholar

Kovács, Á., Szilágyi, J., Józsa, J., 2011. A Calibration-Free Evapotranspiration Mapping (CREMAP) technique. In: Labedzki, L. (Eds:) Evapotranspiration. Intech Open, pp. 258–274. ISBN: 978-953-307-251-7. Online: https://www.intechopen.com/chapters/14189Search in Google Scholar

Lapin, M., Faško, P., Košťálová, J., Šamaj, F., 1991. Zrážkové pomery na Slovensku po oprave systematických chýb meraní atmosférických zrážok (Precipitation patterns in Slovakia after correction of the systematic errors of precipitation measurement). Vodohospodársky časopis, 39, 207–220.Search in Google Scholar

Lapin, M., Damborská, I., Gera, M., Melo, M., Hrvoľ, J., 2016. Potential and current evapotranspiration in Slovakia in the period 1951-2015 and scenarios of possible development until 2100. In: Proceedings of the International Conference in Kutná Hora, 28.–29.4.2016. Soil and agricultural drought, Prague, VÚMOP, pp. 210–225.Search in Google Scholar

Lavenne, A., Andréassian, V., 2018. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas. Journal of Hydrology, 558, 266–274. https://doi.org/10.1016/j.jhydrol.2018.01.009Search in Google Scholar

Lhomme, P., Guilioni, L., 2006. Comments on some articles about the complementary relationship. J. Hydrol., 323, 1–3. https://doi.org/10.1016/j.jhydrol.2005.08.014.Search in Google Scholar

Majerčáková, O., Škoda, P., Šťastný, P., Faško, P., 2004. The development of water balance components for the periods 1931–1980 and 1961–2000. J. Hydrol. Hydromech., 52, 355–364, (In Slovak.). http://www.uh.sav.sk/vc_articles/2004_52_4_Majercakova_355.pdfSearch in Google Scholar

McMahon, T., Laaha, G., Parajka, J., Peel, M., Savenije, H., Sivapalan, M., Yang, D., 2012. Prediction of annual runoff in ungauged basins. In: Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., Savenije, H. (Eds.:) Runoff Prediction in Un-gauged Basins: Synthesis across Processes, Places and Scales. Cambridge: Cambridge University Press, pp. 70–101. https://doi.org/10.1017/CBO9781139235761.008Search in Google Scholar

Mendel, O., Pekárová, P., 1983. On the issue of the calculating corrections of the monthly, annual, and seasonal rainfall totals. In: Proc: Hydrologické a hydraulické procesy v krajine. (Zborník referátov z konf. k 30-temu výročiu založenia ÚHH SAV.) ÚHH SAV, Bratislava, pp. 105–117.Search in Google Scholar

Mendel, O., Pekárová, P., 1995. Influence of precipitation corrections on the determination of the catchment evapotranspi-ration. In: Więzik, B. (Ed.): Hydrological Processes in the Catchment. Institute of Water Engineering and Water Management, Cracow, pp. 333–340.Search in Google Scholar

Milly, P.C.D., Dunne, K.A., 2002. Macroscale water fluxes 2. Water and energy supply control of their interannual variability. Water Resour. Res., 38, 1–9, DOI: 10.1029/2001WR000760Search in Google Scholar

Morton, F.I., 1983. Operational estimates of areal evapotranspi-ration and their significance to the science and practice of hydrology. J. Hydrol., 66, 1–76. https://doi.org/10.1016/0022-1694(83)90177-4Search in Google Scholar

Novák, V., 1995. Evaporation of water in nature and methods of its determination. Veda, Bratislava, 253 p.Search in Google Scholar

Oľdekop, E.M., 1911. On evaporation from the surface of river basins. Collected Articles of Students at Yuryev Univ., Mete-orol., 4, 200. (In Russian.).Search in Google Scholar

Ozdogan, M., Salvucci, G.D., Anderson, B.T., 2006. Examination of the Bouchet-Morton complementary relationship using a mesoscale climate model and observations under a progressive irrigation scenario. J. Hydrometeorol., 7, 235–251. https://doi.org/10.1175/JHM485.1Search in Google Scholar

Padrón, R.S., Gudmundsson, L., Decharme, B., Ducharne, A., Lawrence, D.M., Mao, J., Peano, D., Krnner, G., Kim, H., Seneviratne, S.I., 2020. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci., 13, 477–481. https://doi.org/10.1038/s41561-020-0594-1Search in Google Scholar

Parajka J., Szolgay J., 1998. Grid-based mapping of the long-term mean annual potential and actual evapotranspiration in Slovakia. IAHS Publ., 248, 123–129. https://www.researchgate.net/publication/268176189_Grid-based_mapping_of_long-term_mean_annual_potential_and_actual_evapotranspiration_in_SlovakiaSearch in Google Scholar

Parajka, J., 2000. Mapping long-term mean annual runoff using empirical models. Acta Hydrologica Slovaca, 1, 2, 51−59. http://www.uh.sav.sk/ah_articles/2000_1_2_Parajka_51.pdfSearch in Google Scholar

Parajka, J., Szolgay, J., Mészároš, I., Kostka, Z., 2004. Grid-based mapping of the long-term mean annual potential and actual evapotranspiration in upper Hron river basin. J. Hydrol. Hydro-mech., 52, 4, 239–254. https://www.researchgate.net/publication/44277203_Grid-based_mapping_of_the_long-term_mean_annual_potential_and_actual_evapotranspiration_in_upper_Hron_River_basinSearch in Google Scholar

Petrovič, P., 2002. The Danube Basin water balance – Case Study: The Nitra River basin. In: Proceedings of the 21st Conference of the Danube Countries on the Hydrological Forecasting and Hydrological Bases of Water Management, Bucharest, Romania.Search in Google Scholar

Petrovič, P. (Ed.), 2006. Basin-wide water balance in the Danube River basin. The Danube and its basin – Hydrological monograph Part VIII-3. IHP UNESCO & VÚVH Bratislava, 161 p.Search in Google Scholar

Petrovič, P., Mravcová, K., Holko, L., Kostka, Z., Miklánek, P., 2010. Basin-wide water balance in the Danube River basin. In: Brilly, M. (Eds.:) Hydrological Processes of the Danube River Basin. Springer, Dordrecht, pp. 227–258. https://doi.org/10.1007/978-90-481-3423-6_7Search in Google Scholar

Pulliainen, J., Luojus, K., Derksen, CH., Mudryk, L., Lemmetyinen, J., Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolander, T. Norberg, J., 2020. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 581, 294–298, https://doi.org/10.1038/s41586-020-2258-0.Search in Google Scholar

Regionale Zusammenarbeit der Donauländer, 1986. Die Donau und ihr Einzugsgebiet. Eine hydrologische Monographie. IHP UNESCO, 380 p.Search in Google Scholar

Sevruk, B., 1982. Methods of correction for systematic error in point precipitation measurement for operational use. WMO Operational Hydrology Report No. 21. WMO-No. 589. World Meteorological Organisation, Geneva, Switzerland.Search in Google Scholar

Sevruk, B., Ondras, M., Chvila, B., 2008. The WMO precipitation measurement intercomparisons. Atmospheric Research, 92, 376–380.Search in Google Scholar

Schreiber, P., 1904. Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Z. Meteorol., 21, 441–452.Search in Google Scholar

Shahidian, S., Serralheiro, R., Serrano, J., Teixeira, J., Haie, N., Santos, F., 2012. Hargreaves and other reduced-set methods for calculating evapotranspiration. In: Irmak, A. (Eds:) Evapotranspiration - Remote Sensing and Modeling, IntechOpen, pp. 59–80. https://www.intechopen.com/chapters/26100Search in Google Scholar

Sleziak, P., Výleta, R., Hlavčová, K., Danáčová, M., Aleksić, M., Szolgay, J., Kohnová, S., 2021. A hydrological modeling approach for assessing the impacts of climate change on runoff regimes in Slovakia. Water, 13, 3358. https://doi.org/10.3390/w13233358Search in Google Scholar

Sposito, G., 2017. Understanding the Budyko Equation. Water, 9, 236. https://doi.org/10.3390/w9040236Search in Google Scholar

Stančík, A., Jovanovič, S., 1988. Hydrology of the River Danube. Príroda, Bratislava, 272 p.Search in Google Scholar

Szilágyi, J., Józsa, J., 2009. Complementary relationship of evaporation and the mean annual water-energy balance. Water Resour. Res. 45, W09201. https://doi.org/10.1029/2009WR008129Search in Google Scholar

Thomas, B., Behrangi, A., Famiglietti, J., 2016. Precipitation intensity effects on groundwater recharge in the southwestern United States. Water, 8, 90. https://doi.org/10.3390/w8030090Search in Google Scholar

Trenberth, K.E., Smith, L., Qian, T., Dai, A., Fasullo, J., 2007. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758–769. https://doi.org/10.1175/JHM600.1.Search in Google Scholar

Turc, L., 1954. Le bilan d’eau des sols. Relations entre les précipitation, l’évaporation et l’ecoulement. (Soil water balance: Relationship between precipitation, evaporation, and flow). Annales Agronomiques, 5, 491–569.Search in Google Scholar

Turc, L., 1955. Le bilan d’eau des sols: Relations entre les précipitations, l’évaporation et l’écoulement. Journées de l’hydraulique, 3–1, 36–44. https://www.persee.fr/doc/jhydr_0000-0001_1955_act_3_1_3278Search in Google Scholar

Williams, A.P., Cook, E.R., Smerdon, J.E., Cook, B.I., Abatzoglou, J.T., Bolles, K., Baek, S.H., Badger, A.M., Livneh, B., 2020. Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 368, 314–318. https://doi.org/10.1126/science.aaz9600Search in Google Scholar

Yates, D., 1994. WatBal - An Integrated Water Balance Model of River Basin Runoff. IIASA WP-94–64.Search in Google Scholar

Ye, B., Yang D., Ma, L., 2012. Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China. Environ. Res.Lett., 7, 025201. https://doi.org/10.1088/1748-9326/7/2/025201Search in Google Scholar

Zhang, K., Kimball, J.S., Nemani, R.R., Running, S.W., 2010. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res., 46, 9, W09522. https://doi.org/10.1029/2009WR008800Search in Google Scholar

eISSN:
1338-4333
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other