[
Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water content. Biosyst. Eng., 86, 1, 97–102. DOI: 10.1016/S1537-5110(03)00112-0
]Otwórz DOISearch in Google Scholar
[
Ad-Hoc AG Boden, 2005. Bodenkundliche Kartieranleitung (KA5). 5th Ed. Bundesanstalt für Geowissenschaften und Rohstoffe, E. Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart.
]Search in Google Scholar
[
Ahmad, S., Rizvi, Z.H., Arp, J.C.C., Wuttke, F., Tirth, V., Islam, S., 2021. Evolution of temperature field around underground power cable for static and cyclic heating. Energies, 14, 8191. https://doi.org/10.3390/en1423819110.3390/en14238191
]Search in Google Scholar
[
Arkhangelskaya, T., Lukyashchenko, K., 2018. Estimating soil thermal diffusivity at different water contents from easily available data on soil texture, bulk density, and organic carbon content. Biosyst. Eng., 168, 83–95. DOI: 10.1016/j.biosystemseng.2017.06.011
]Otwórz DOISearch in Google Scholar
[
Arkhangelskaya, T., 2020. Parameters of the thermal diffusivity vs. water content function for mineral soils of different textural classes. Eurasian Soil Sci., 53, 39–49. DOI: 10.1134/S1064229320010032
]Otwórz DOISearch in Google Scholar
[
Beck-Broichsitter, S., Gerke, H.H., Horn, R., 2018. Shrinkage characteristics of boulder marl as sustainable mineral liner material for landfill capping systems. Sustainability, 10, 11, 4025. DOI: 10.3390/su10114025
]Otwórz DOISearch in Google Scholar
[
Beck-Broichsitter, S., Gerke, H.H., Leue, M., von Jeetze, P.J., Horn, R., 2020b. Anisotropy of unsaturated soil hydraulic properties of eroded Luvisol after conversion to hayfield comparing alfalfa and grass plots. Soil Till. Res., 198, 104553. DOI: 10.1016/j.still.2019.104553
]Otwórz DOISearch in Google Scholar
[
Beck-Broichsitter, S., Dusek, J., Vogel, T., Horn, R., 2022. Anisotropy of soil water diffusivity of hillslope soil under spruce forest derived by x-ray CT and lab experiments. Environ. Earth Sci., 81, 457.10.1007/s12665-022-10511-9
]Search in Google Scholar
[
Bertermann, D., Mueller, J., Freitag, S., Schwarz, H., 2018. Comparison between measured and calculated thermal conductivities within different grain size classes and their related depth ranges. Soil Syst., 2, 3, 50. DOI: 10.3390/soilsystems2030050
]Otwórz DOISearch in Google Scholar
[
Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Klute, A. (Ed.): Methods of Soil Analysis: Part 1 Physical and Miner-alogical Methods. 2nd ed. ASA and SSSA, Madison, WI, USA, pp. 363–375.10.2136/sssabookser5.1.2ed.c13
]Search in Google Scholar
[
Bouwer, H., Rice, R.C. 1984. Hydraulic properties of stony vadose zones. Ground Water, 22, 6, 696–705. DOI: 10.1111/j.1745-6584.1984.tb01438.x
]Otwórz DOISearch in Google Scholar
[
Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma, 124, 3–22. DOI: 10.1016/j.geoderma. 2004.03.005
]Otwórz DOISearch in Google Scholar
[
Chapuis, R.P., 2004. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can. Geotech. J., 2004, 41, 787–795. DOI: 10.1139/t04-022
]Otwórz DOISearch in Google Scholar
[
Chief, K., Ferre, T.P.A., Hinnell, A.C., 2008. The effects of anisotropy on in situ air permeability measurements. Vadose Zone J., 7, 941–947. DOI: 10.2136/vzj2007.0164
]Otwórz DOISearch in Google Scholar
[
Corti, G., Ugolini, F.C., Agnelli, A., Certini, G., Cuniglio, R., Berna, F., Fernandez, M.J., 2002. The soil skeleton, a forgotten pool of carbon and nitrogen in soil. Eur. J. Soil Sci., 53, 283–298. DOI: 10.1046/j.1365-2389.2002.00442.x
]Otwórz DOISearch in Google Scholar
[
de Vries, D.A., 1963. Thermal properties of soils. In: van Wijk, W.R. (Ed.): Physics of Plant Environment. John Wiley and Sons, Inc., New York.
]Search in Google Scholar
[
Dong, Y., McCartney, J.S., Lu, N., 2015. Critical review of thermal conductivity models for unsaturated soils. Geotech. Geol. Eng., 33, 207–221. DOI: 10.1007/s10706-015-9843-2
]Otwórz DOISearch in Google Scholar
[
Fies, J. C., Louvigny, D.E., Chanzy, A., 2002. The role of stones in soil water retention. Eur. J. Soil Sci., 53, 1, 95–104. DOI: 10.1046/j.1365-2389.2002.00431.x
]Otwórz DOISearch in Google Scholar
[
Haghverdi, A., Najarchi, M., Öztürk, H.S., Durner, W., 2020. Studying unimodal, bimodal, PDI and bimodal-PDI variants of multiple soil water retention models: I. Direct model fit using the extended evaporation and dewpoint methods. Water, 12, 3, 900. https://doi.org/10.3390/w1203090010.3390/w12030900
]Search in Google Scholar
[
Hartge, K.H., Horn, R., 2016. Essential Soil Physics: An Introduction to Soil Processes, Structure, and Mechanics. Schweizerbart Science Publishers, Stuttgart, Germany, 392 p.
]Search in Google Scholar
[
Hasler, M., Horton, L.A., 2008. Multiple contrast tests in the presence of heteroscedasticity. Biometrical J., 50, 793–800. DOI: 10.1002/bimj.20071046618932141
]Otwórz DOISearch in Google Scholar
[
Hlavacikova, H., Novak, V., Holko, L., 2015. On the role of rock fragments and initial soil water content in the potential sub-surface runoff formation. J. Hydrol. Hydromech., 63, 1, 71–81. DOI: 10.1515/johh-2015-0002
]Otwórz DOISearch in Google Scholar
[
Howard, J., 2017. The Nature and Significance of Anthropogenic Soils. In: Anthropogenic Soils. Progress in Soil Science. Springer, Cham. DOI: 10.1007/978-3-319-54331-4_1
]Otwórz DOISearch in Google Scholar
[
Iden, S., Durner, W., 2014. Comment on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A. Peters. Water Resour. Res., 50, 7530–7534. DOI: 10.1002/2014WR015937
]Otwórz DOISearch in Google Scholar
[
Lu, Y., Liu, S., Zjang, Y., Wang, L., Li, Z., 2021. Hydraulic conductivity of gravelly soils with various coarse particle contents subjected to freeze–thaw cycles. J. Hydrol., 598, 126302. DOI: 10.1016/j.jhydrol.2021.126302
]Otwórz DOISearch in Google Scholar
[
Maroof, M.A., Eidgahee, D.R., Mahboubi, A., 2022. Particle Morphology Effect on the Soil Pore Structure. In: Feng, G. (Ed.): Proceedings of the 8th International Conference on Civil Engineering. ICCE 2021. Lecture Notes in Civil Engineering, vol 213. Springer, Singapore. DOI: 10.1007/978-981-19-1260-3_1
]Otwórz DOISearch in Google Scholar
[
Miller, R. B., Heeren, D.M., Fox, G.A., Halihan, T., Storm, D.E., Mittelstet, A.R., 2014. The hydraulic conductivity structure of gravel-dominated vadose zones within alluvial floodplains. J. Hydrol., 513, 229–240. DOI: 10.1016/j.jhydrol.2014.03.046
]Otwórz DOISearch in Google Scholar
[
Naseri, M., Iden, S.C., Richter, N., Durner, W., 2019. Influence of stone content on soil hydraulic properties: experimental investigation and test of existing model concepts. Vadose Zone J., 18, 1, 1–10. DOI: 10.2136/vzj2018.08.0163
]Otwórz DOISearch in Google Scholar
[
Novak, V., Knava, K., Simunek, J., 2011. Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method. Geoderma, 161, 177–181. DOI: 10.1016/j.geoderma.2010.12.016
]Otwórz DOISearch in Google Scholar
[
Pertassek, T., Peters, A., Durner, W., 2015. HYPROP-FIT software user’s manual, V.3.0. UMS GmbH, Munich, Germany.
]Search in Google Scholar
[
Peters, A., 2013. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res., 49, 6765–6780. DOI: 10.1002/wrcr.20548
]Otwórz DOISearch in Google Scholar
[
Peters, A., 2014. Reply to comment by S. Iden and W. Durner on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range”. Water Re-sour. Res., 50, 7535–7539. DOI: 10.1002/2014WR016107.
]Otwórz DOISearch in Google Scholar
[
Poeplau, C., Vos, C., Don, A., 2017. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil, 3, 61–66. DOI: 10.5194/soil-3-61-2017
]Otwórz DOISearch in Google Scholar
[
R Development Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
]Search in Google Scholar
[
Rerak, M., Ocłon, P., 2017. Thermal analysis of underground power cable system. J. Therm. Sci., 26, 5, 465–471. DOI: 10.1007/s11630-017-0963-2
]Otwórz DOISearch in Google Scholar
[
Rytter, R.-M., 2012. Stone and gravel contents of arable soils influence estimates of C and N stocks. Catena, 95, 153–159. DOI: 10.1016/j.catena.2012.02.015
]Otwórz DOISearch in Google Scholar
[
Rizvi, Z.H., Zaidi, H.H., Akhtar, S.J., Sattari, A., Wuttke, F., 2020. Soft and hard computation methods for estimation of the effective thermal conductivity of sands. Heat Mass Transf., 56, 6, 1947–1959. DOI: 10.1007/s00231-020-02833-w
]Otwórz DOISearch in Google Scholar
[
Rizvi, Z.H., Akhtar, S.J., Husain, S.M.B., Khan, M., Haider, H., Naqvi, S., Tirth, V., Wuttke, F., 2022. Neural network approaches for computation of soil thermal conductivity. Mathematics, 10, 3957. https://doi.org/10.3390/math1021395710.3390/math10213957
]Search in Google Scholar
[
Sauer, T.J., Logsdon, S.D., 2002. Hydraulic and physical properties of stony soils in a small watershed. Soil. Sci. Soc. Am. J., 66, 1947–1956. DOI: 10.2136/sssaj2002.1947
]Otwórz DOISearch in Google Scholar
[
Shakoor, A., Cook, B.D., 1990. The effect of stone content, size, and shape on engineering properties of a compacted silty clay. Bull. Assoc. Eng. Geol., 27, 2, 245–253. DOI: 10.2113/GSEEGEOSCI.XXVII.2.245
]Otwórz DOISearch in Google Scholar
[
She, K., Horn, D., Canning, P., 2006. Porosity and hydraulic conductivity of mixed sand-gravel sediment. In: Proc. 41st Defra Flood and Coastal Management Conference, 4 - 6 July 2006, York, UK.
]Search in Google Scholar
[
USDA/NRCS. 2005. United States Department of Agriculture, Natural Resources Conservation Service, Soil Survey Manual. 1993, updated 2005. online source: http://soils.usda.gov/technical/manual/.
]Search in Google Scholar
[
USDA/NRCS, 2007. United States Department of Agriculture, Natural Resources Conservation Service. Saturated hydraulic conductivity in relation to soil texture. online source: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr10/tr/?cid=nrcs144p2_074846
]Search in Google Scholar
[
van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898. DOI: 10.2136/sssaj1980.03615995004400050002x
]Otwórz DOISearch in Google Scholar