1. bookVolume 71 (2023): Edition 1 (March 2023)
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Effect of gravel content on soil water retention characteristics and thermal capacity of sandy and silty soils

Publié en ligne: 04 Feb 2023
Volume & Edition: Volume 71 (2023) - Edition 1 (March 2023)
Pages: 1 - 10
Reçu: 30 Aug 2022
Accepté: 03 Jan 2023
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais

Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water content. Biosyst. Eng., 86, 1, 97–102. DOI: 10.1016/S1537-5110(03)00112-0 Ouvrir le DOISearch in Google Scholar

Ad-Hoc AG Boden, 2005. Bodenkundliche Kartieranleitung (KA5). 5th Ed. Bundesanstalt für Geowissenschaften und Rohstoffe, E. Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart. Search in Google Scholar

Ahmad, S., Rizvi, Z.H., Arp, J.C.C., Wuttke, F., Tirth, V., Islam, S., 2021. Evolution of temperature field around underground power cable for static and cyclic heating. Energies, 14, 8191. https://doi.org/10.3390/en1423819110.3390/en14238191 Search in Google Scholar

Arkhangelskaya, T., Lukyashchenko, K., 2018. Estimating soil thermal diffusivity at different water contents from easily available data on soil texture, bulk density, and organic carbon content. Biosyst. Eng., 168, 83–95. DOI: 10.1016/j.biosystemseng.2017.06.011 Ouvrir le DOISearch in Google Scholar

Arkhangelskaya, T., 2020. Parameters of the thermal diffusivity vs. water content function for mineral soils of different textural classes. Eurasian Soil Sci., 53, 39–49. DOI: 10.1134/S1064229320010032 Ouvrir le DOISearch in Google Scholar

Beck-Broichsitter, S., Gerke, H.H., Horn, R., 2018. Shrinkage characteristics of boulder marl as sustainable mineral liner material for landfill capping systems. Sustainability, 10, 11, 4025. DOI: 10.3390/su10114025 Ouvrir le DOISearch in Google Scholar

Beck-Broichsitter, S., Gerke, H.H., Leue, M., von Jeetze, P.J., Horn, R., 2020b. Anisotropy of unsaturated soil hydraulic properties of eroded Luvisol after conversion to hayfield comparing alfalfa and grass plots. Soil Till. Res., 198, 104553. DOI: 10.1016/j.still.2019.104553 Ouvrir le DOISearch in Google Scholar

Beck-Broichsitter, S., Dusek, J., Vogel, T., Horn, R., 2022. Anisotropy of soil water diffusivity of hillslope soil under spruce forest derived by x-ray CT and lab experiments. Environ. Earth Sci., 81, 457.10.1007/s12665-022-10511-9 Search in Google Scholar

Bertermann, D., Mueller, J., Freitag, S., Schwarz, H., 2018. Comparison between measured and calculated thermal conductivities within different grain size classes and their related depth ranges. Soil Syst., 2, 3, 50. DOI: 10.3390/soilsystems2030050 Ouvrir le DOISearch in Google Scholar

Blake, G.R., Hartge, K.H., 1986. Bulk density. In: Klute, A. (Ed.): Methods of Soil Analysis: Part 1 Physical and Miner-alogical Methods. 2nd ed. ASA and SSSA, Madison, WI, USA, pp. 363–375.10.2136/sssabookser5.1.2ed.c13 Search in Google Scholar

Bouwer, H., Rice, R.C. 1984. Hydraulic properties of stony vadose zones. Ground Water, 22, 6, 696–705. DOI: 10.1111/j.1745-6584.1984.tb01438.x Ouvrir le DOISearch in Google Scholar

Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma, 124, 3–22. DOI: 10.1016/j.geoderma. 2004.03.005 Ouvrir le DOISearch in Google Scholar

Chapuis, R.P., 2004. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can. Geotech. J., 2004, 41, 787–795. DOI: 10.1139/t04-022 Ouvrir le DOISearch in Google Scholar

Chief, K., Ferre, T.P.A., Hinnell, A.C., 2008. The effects of anisotropy on in situ air permeability measurements. Vadose Zone J., 7, 941–947. DOI: 10.2136/vzj2007.0164 Ouvrir le DOISearch in Google Scholar

Corti, G., Ugolini, F.C., Agnelli, A., Certini, G., Cuniglio, R., Berna, F., Fernandez, M.J., 2002. The soil skeleton, a forgotten pool of carbon and nitrogen in soil. Eur. J. Soil Sci., 53, 283–298. DOI: 10.1046/j.1365-2389.2002.00442.x Ouvrir le DOISearch in Google Scholar

de Vries, D.A., 1963. Thermal properties of soils. In: van Wijk, W.R. (Ed.): Physics of Plant Environment. John Wiley and Sons, Inc., New York. Search in Google Scholar

Dong, Y., McCartney, J.S., Lu, N., 2015. Critical review of thermal conductivity models for unsaturated soils. Geotech. Geol. Eng., 33, 207–221. DOI: 10.1007/s10706-015-9843-2 Ouvrir le DOISearch in Google Scholar

Fies, J. C., Louvigny, D.E., Chanzy, A., 2002. The role of stones in soil water retention. Eur. J. Soil Sci., 53, 1, 95–104. DOI: 10.1046/j.1365-2389.2002.00431.x Ouvrir le DOISearch in Google Scholar

Haghverdi, A., Najarchi, M., Öztürk, H.S., Durner, W., 2020. Studying unimodal, bimodal, PDI and bimodal-PDI variants of multiple soil water retention models: I. Direct model fit using the extended evaporation and dewpoint methods. Water, 12, 3, 900. https://doi.org/10.3390/w1203090010.3390/w12030900 Search in Google Scholar

Hartge, K.H., Horn, R., 2016. Essential Soil Physics: An Introduction to Soil Processes, Structure, and Mechanics. Schweizerbart Science Publishers, Stuttgart, Germany, 392 p. Search in Google Scholar

Hasler, M., Horton, L.A., 2008. Multiple contrast tests in the presence of heteroscedasticity. Biometrical J., 50, 793–800. DOI: 10.1002/bimj.20071046618932141 Ouvrir le DOISearch in Google Scholar

Hlavacikova, H., Novak, V., Holko, L., 2015. On the role of rock fragments and initial soil water content in the potential sub-surface runoff formation. J. Hydrol. Hydromech., 63, 1, 71–81. DOI: 10.1515/johh-2015-0002 Ouvrir le DOISearch in Google Scholar

Howard, J., 2017. The Nature and Significance of Anthropogenic Soils. In: Anthropogenic Soils. Progress in Soil Science. Springer, Cham. DOI: 10.1007/978-3-319-54331-4_1 Ouvrir le DOISearch in Google Scholar

Iden, S., Durner, W., 2014. Comment on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A. Peters. Water Resour. Res., 50, 7530–7534. DOI: 10.1002/2014WR015937 Ouvrir le DOISearch in Google Scholar

Lu, Y., Liu, S., Zjang, Y., Wang, L., Li, Z., 2021. Hydraulic conductivity of gravelly soils with various coarse particle contents subjected to freeze–thaw cycles. J. Hydrol., 598, 126302. DOI: 10.1016/j.jhydrol.2021.126302 Ouvrir le DOISearch in Google Scholar

Maroof, M.A., Eidgahee, D.R., Mahboubi, A., 2022. Particle Morphology Effect on the Soil Pore Structure. In: Feng, G. (Ed.): Proceedings of the 8th International Conference on Civil Engineering. ICCE 2021. Lecture Notes in Civil Engineering, vol 213. Springer, Singapore. DOI: 10.1007/978-981-19-1260-3_1 Ouvrir le DOISearch in Google Scholar

Miller, R. B., Heeren, D.M., Fox, G.A., Halihan, T., Storm, D.E., Mittelstet, A.R., 2014. The hydraulic conductivity structure of gravel-dominated vadose zones within alluvial floodplains. J. Hydrol., 513, 229–240. DOI: 10.1016/j.jhydrol.2014.03.046 Ouvrir le DOISearch in Google Scholar

Naseri, M., Iden, S.C., Richter, N., Durner, W., 2019. Influence of stone content on soil hydraulic properties: experimental investigation and test of existing model concepts. Vadose Zone J., 18, 1, 1–10. DOI: 10.2136/vzj2018.08.0163 Ouvrir le DOISearch in Google Scholar

Novak, V., Knava, K., Simunek, J., 2011. Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method. Geoderma, 161, 177–181. DOI: 10.1016/j.geoderma.2010.12.016 Ouvrir le DOISearch in Google Scholar

Pertassek, T., Peters, A., Durner, W., 2015. HYPROP-FIT software user’s manual, V.3.0. UMS GmbH, Munich, Germany. Search in Google Scholar

Peters, A., 2013. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res., 49, 6765–6780. DOI: 10.1002/wrcr.20548 Ouvrir le DOISearch in Google Scholar

Peters, A., 2014. Reply to comment by S. Iden and W. Durner on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range”. Water Re-sour. Res., 50, 7535–7539. DOI: 10.1002/2014WR016107. Ouvrir le DOISearch in Google Scholar

Poeplau, C., Vos, C., Don, A., 2017. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil, 3, 61–66. DOI: 10.5194/soil-3-61-2017 Ouvrir le DOISearch in Google Scholar

R Development Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Search in Google Scholar

Rerak, M., Ocłon, P., 2017. Thermal analysis of underground power cable system. J. Therm. Sci., 26, 5, 465–471. DOI: 10.1007/s11630-017-0963-2 Ouvrir le DOISearch in Google Scholar

Rytter, R.-M., 2012. Stone and gravel contents of arable soils influence estimates of C and N stocks. Catena, 95, 153–159. DOI: 10.1016/j.catena.2012.02.015 Ouvrir le DOISearch in Google Scholar

Rizvi, Z.H., Zaidi, H.H., Akhtar, S.J., Sattari, A., Wuttke, F., 2020. Soft and hard computation methods for estimation of the effective thermal conductivity of sands. Heat Mass Transf., 56, 6, 1947–1959. DOI: 10.1007/s00231-020-02833-w Ouvrir le DOISearch in Google Scholar

Rizvi, Z.H., Akhtar, S.J., Husain, S.M.B., Khan, M., Haider, H., Naqvi, S., Tirth, V., Wuttke, F., 2022. Neural network approaches for computation of soil thermal conductivity. Mathematics, 10, 3957. https://doi.org/10.3390/math1021395710.3390/math10213957 Search in Google Scholar

Sauer, T.J., Logsdon, S.D., 2002. Hydraulic and physical properties of stony soils in a small watershed. Soil. Sci. Soc. Am. J., 66, 1947–1956. DOI: 10.2136/sssaj2002.1947 Ouvrir le DOISearch in Google Scholar

Shakoor, A., Cook, B.D., 1990. The effect of stone content, size, and shape on engineering properties of a compacted silty clay. Bull. Assoc. Eng. Geol., 27, 2, 245–253. DOI: 10.2113/GSEEGEOSCI.XXVII.2.245 Ouvrir le DOISearch in Google Scholar

She, K., Horn, D., Canning, P., 2006. Porosity and hydraulic conductivity of mixed sand-gravel sediment. In: Proc. 41st Defra Flood and Coastal Management Conference, 4 - 6 July 2006, York, UK. Search in Google Scholar

USDA/NRCS. 2005. United States Department of Agriculture, Natural Resources Conservation Service, Soil Survey Manual. 1993, updated 2005. online source: http://soils.usda.gov/technical/manual/. Search in Google Scholar

USDA/NRCS, 2007. United States Department of Agriculture, Natural Resources Conservation Service. Saturated hydraulic conductivity in relation to soil texture. online source: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr10/tr/?cid=nrcs144p2_074846 Search in Google Scholar

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898. DOI: 10.2136/sssaj1980.03615995004400050002x Ouvrir le DOISearch in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo