[
Alcañiz, M., Outeiro, L., Francos, M., Úbeda, X., 2018. Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613–614, 944–957. DOI: 10.1016/j.scitotenv. 2017.09.144
]Otwórz DOISearch in Google Scholar
[
Atchley, A.L., Kinoshita, A.M., Lopez, S.R., Trader, L., Middleton, R, 2018. Simulating surface and subsurface water balance changes due to burn severity. Vadose Zone Journal, 17, 1, 180099. DOI: 10.2136/vzj2018.05.0099
]Otwórz DOISearch in Google Scholar
[
Badía, D., Martí, C., 2003. Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Research and Management, 17, 1, 23–41. DOI: 10.1080/15324980301595
]Otwórz DOISearch in Google Scholar
[
Badía, D., Martí, C., Aguirre, A.J., Aznar, J.M., González-Pérez, J.A., De la Rosa, J.M., León, J., Ibarra, P., Echeverría, T., 2014. Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: Changes at cm-scale topsoil. Catena, 113, 267–275. DOI: 10.1016/j.catena.2013.08.002
]Otwórz DOISearch in Google Scholar
[
Barroso, P.M., Vaverková, M.D., 2020. Fire effects on soils – A pilot scale study on the soils affected by wildfires in the Czech Republic. Journal of Ecological Engineering, 21, 6, 248–256. DOI: 10.12911/22998993/123471
]Otwórz DOISearch in Google Scholar
[
Bennett, L.T., Aponte, C., Baker, T.G., Tolhurst, K.G., 2014. Evaluating long-term effects of prescribed fire regimes on carbon stocks in a temperate eucalypt forest. Forest Ecology and Management, 328, 219–228. DOI: 10.1016/j.foreco.2014.05.028
]Otwórz DOISearch in Google Scholar
[
Bird, M.I., Veenendaal, E.M., Moyo, C., Lloyd, J., Frost, P., 2000. Effect of fire and soil texture on soil carbon in a subhumid savanna (Matopos, Zimbabwe). Geoderma, 94, 1, 71–90. DOI: 10.1016/S0016-7061(99)00084-1
]Otwórz DOISearch in Google Scholar
[
Blakemore, L.C., 1972. Methods for chemical analysis of soils.
]Search in Google Scholar
[
Bogena, H.R., Herbst, M., Huisman, J.A., Rosenbaum, U., Weuthen, A., Vereecken, H., 2010. Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone Journal, 9, 4, 1002–1013. DOI: 10.2136/vzj2009.0173
]Otwórz DOISearch in Google Scholar
[
Boyer, W.D., Miller, J.H., 1994. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. Forest Ecology and Management, 70, 311–318.10.1016/0378-1127(94)90096-5
]Search in Google Scholar
[
Brye, K.R., 2006. Soil physiochemical changes following 12 years of annual burning in a humid–subtropical tallgrass prairie: a hypothesis. Acta Oecologica, 30, 3, 407–413. DOI: 10.1016/j.actao.2006.06.001
]Otwórz DOISearch in Google Scholar
[
Caon, L., Vallejo, V.R., Ritsema, C.J., Geissen, V., 2014. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, 139, 47–58. DOI: 10.1016/j.earscirev. 2014.09.001
]Otwórz DOISearch in Google Scholar
[
Cawson, J.G., Nyman, P., Smith, H.G., Lane, P.N.J., Sheridan, G.J., 2016. How soil temperatures during prescribed burning affect soil water repellency, infiltration and erosion. Geoderma, 278, 12–22. DOI: 10.1016/j.geoderma.2016.05.002
]Otwórz DOISearch in Google Scholar
[
Chen, J.J., McGuire, K.J., Stewart, R.D., 2020. Effect of soil water-repellent layer depth on post-wildfire hydrological processes. Hydrological Processes, 34, 2, 270–283. DOI: 10.1002/hyp.13583
]Otwórz DOISearch in Google Scholar
[
DeBano, L.F, 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231–232, 195–206. DOI: 10.1016/S0022-1694(00)00194-3
]Otwórz DOISearch in Google Scholar
[
Dekker, L.W., Ritsema, C.J., Oostindie, K., Moore, D., Wesseling, J.G., 2009. Methods for determining soil water repellency on field-moist samples. Water Resources Research, 45, 4. DOI: 10.1029/2008WR007070
]Otwórz DOISearch in Google Scholar
[
Delač, D., Pereira, P., Bogunović, I., Kisić, I., 2020. Short-Term Effects of Pile Burn on N Dynamic and N Loss in Mediterranean Croatia. Agronomy, 10, 9, 1340. DOI: 10.3390/agronomy10091340
]Otwórz DOISearch in Google Scholar
[
Dohnal, M., Dusek, J., Vogel, T., 2010. Improving hydraulic conductivity estimates from minidisk infiltrometer measurements for soils with wide pore-size distributions. Soil Sci. Soc. Am. J., 74, 3, 804–811. DOI: 10.2136/sssaj2009.0099
]Otwórz DOISearch in Google Scholar
[
Driessen, P.M., 2001. Lecture notes on the major soils of the world. Rome: FAO (World soil resources reports, 94).
]Search in Google Scholar
[
Ebel, B.A., 2012. Wildfire impacts on soil-water retention in the Colorado Front Range, United States. Water Resources Research, 48, W12515. DOI: 10.1029/2012WR012362
]Otwórz DOISearch in Google Scholar
[
Ebel, B.A., 2019. Measurement method has a larger impact than spatial scale for plot-scale field-saturated hydraulic conductivity (Kfs) after wildfire and prescribed fire in forests. Earth Surface Processes and Landforms, 44, 10, 1945–1956. DOI: 10.1002/esp.4621
]Otwórz DOISearch in Google Scholar
[
Ebel, B.A., 2020. Temporal evolution of measured and simulated infiltration following wildfire in the Colorado Front Range, USA: Shifting thresholds of runoff generation and hydrologic hazards. Journal of Hydrology, 585, 124765. DOI: 10.1016/j.jhydrol.2020.124765
]Otwórz DOISearch in Google Scholar
[
Ebel, B.A., Martin, D.A., 2017. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment. Hydrological Processes, 31, 21, 3682–3696. DOI: 10.1002/hyp.11288
]Otwórz DOISearch in Google Scholar
[
Ebel, B.A., Moody, J.A., 2020. Parameter estimation for multiple post-wildfire hydrologic models. Hydrological Processes, 34, 21, 4049–4066. DOI: 10.1002/hyp.13865
]Otwórz DOISearch in Google Scholar
[
Fire Rescue Service of the Czech Republic, 2020. Statistical Yearbook 2019. Ministry of the Interior, General Directorate Fire Rescue Service of the Czech Republic. Available online at https://www.hzscr.cz/hasicien/article/statisticalyearbooks.aspx
]Search in Google Scholar
[
Giovannini, G., Lucchesi, S., 1997. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Science, 162, 7. Available online at https://journals.lww.com/soilsci/Fulltext/1997/07000/Modifications__Induced_In_Soil_Physico_Chemical.3.aspx10.1097/00010694-199707000-00003
]Search in Google Scholar
[
Girona-García, A., Badía-Villas, D., Martí-Dalmau, C., Ortiz- Perpiñá, O., Mora, J.L., Armas-Herrera, C.M., 2018. Effects of prescribed fire for pasture management on soil organic matter and biological properties: A 1-year study case in the Central Pyrenees. Science of the Total Environment, 618, 1079–1087. DOI: 10.1016/j.scitotenv.2017.09.12729122341
]Otwórz DOISearch in Google Scholar
[
Godwin, D.R., Kobziar, L.N., Robertson, K.M., 2017. Effects of fire frequency and soil temperature on soil CO2 efflux rates in old-field pine-grassland forests. Forests, 8, 8, 274. DOI: 10.3390/f8080274
]Otwórz DOISearch in Google Scholar
[
Hillel, D., 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam, London.
]Search in Google Scholar
[
Imeson, A.C., Verstraten, J.M., van Mulligen, E.J., Sevink, J., 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena, 19, 3–4, 345–361. DOI: 10.1016/0341-8162(92)90008-Y
]Otwórz DOISearch in Google Scholar
[
Johnson, D.W., Curtis, P.S., 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 140, 2–3, 227–238. DOI: 10.1016/S0378-1127(00)00282-6
]Otwórz DOISearch in Google Scholar
[
Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A. (Ed.): Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. 2nd Ed. Soil Science Society of America, Madison, WI.
]Search in Google Scholar
[
Levene, H., 1960. Contributions to probability and statistics. In: Olkin, I. (Ed.): Stanford Studies in Mathematics and Statistics, 2. Univ. Press, Palo Alto, CA.
]Search in Google Scholar
[
Maina, F.Z., Siirila-Woodburn, E.R., 2020. Watersheds dynamics following wildfires: Nonlinear feedbacks and implications on hydrologic responses. Hydrological Processes, 34, 1, 33–50. DOI: 10.1002/hyp.13568
]Otwórz DOISearch in Google Scholar
[
Mataix-Solera, J., Doerr, S.H., 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma, 118, 1–2, 77–88. DOI: 10.1016/S0016-7061(03)00185-X
]Otwórz DOISearch in Google Scholar
[
Moody, J.A., Ebel, B.A., Nyman, P., Martin, D.A., Stoof, C., McKinley, R., 2016. Relations between soil hydraulic properties and burn severity. International Journal of Wildland Fire, 25, 3, 279–293. DOI: 10.1071/WF14062
]Otwórz DOISearch in Google Scholar
[
Muqaddas, B., Chen, C.R., Lewis, T., Wild, C., 2016. Temporal dynamics of carbon and nitrogen in the surface soil and forest floor under different prescribed burning regimes. Forest Ecology and Management, 382, 110–119. DOI: 10.1016/j.foreco.2016.10.010
]Otwórz DOISearch in Google Scholar
[
Muqaddas, B., Zhou, X.Q., Lewis, T., Wild, C., Chen, C.R., 2015. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Science of the Total Environment, 536, 39–47. DOI: 10.1016/j.scitotenv.2015.07.02326196067
]Otwórz DOISearch in Google Scholar
[
Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83, 5. https://journals.lww.com/soilsci/Fulltext/1957/05000/THE_THEORY_OF_INFILTRATION__1__THE_INFILTRATION.2.aspx10.1097/00010694-195705000-00002
]Search in Google Scholar
[
Rab, M.A., 1996. Soil physical and hydrological properties following logging and slash burning in the Eucalyptus regnans forest of southeastern Australia. Forest Ecology and Management, 84, 1–3, 159–176. DOI: 10.1016/0378-1127(96)03740-1
]Otwórz DOISearch in Google Scholar
[
Scharenbroch, B.C., Nix, B., Jacobs, K.A., Bowles, M.L., 2012. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma, 183–184, 80–91. DOI: 10.1016/j.geoderma.2012.03.010
]Otwórz DOISearch in Google Scholar
[
Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (Complete samples). Biometrika, 52, 3–4, 591. DOI: 10.2307/2333709
]Otwórz DOISearch in Google Scholar
[
Silva, J.S., Rego, F.C., Mazzoleni, S., 2006. Soil water dynamics after fire in a Portuguese shrubland. International Journal of Wildland Fire, 15, 1, 99–111. DOI: 10.1071/WF04057
]Otwórz DOISearch in Google Scholar
[
Stoof, C.R., Ferreira, A.J.D., Mol, W., van den Berg, J., de Kort, A., Drooger, S., Slingerland, E.C., Mansholt, A.U., Ferreira, C.S.S., Ritsema, C.J., 2015. Soil surface changes increase runoff and erosion risk after a low–moderate severity fire. Geoderma, 239–240, 58–67. DOI: 10.1016/j.geoderma.2014.09.020
]Otwórz DOISearch in Google Scholar
[
Stoof, C.R., Wesseling, J.G., Ritsema, C.J., 2010. Effects of fire and ash on soil water retention. Geoderma, 159, 3–4, 276–285. DOI: 10.1016/j.geoderma.2010.08.002
]Otwórz DOISearch in Google Scholar
[
Swift Jr., L.W., Elliott, K.J., Ottmar, R.D., Vihnanek, R.E., 1993. Site preparation burning to improve southern Appalachian pine–hardwood stands: fire characteristics and soil erosion, moisture, and temperature. Can. J. For. Res., 23, 10, 2242–2254. DOI: 10.1139/x93-278
]Otwórz DOISearch in Google Scholar
[
Taylor, Q.A., Midgley, M.G., 2018. Prescription side effects: Long-term, high-frequency controlled burning enhances nitrogen availability in an Illinois oak-dominated forest. Forest Ecology and Management, 411, 82–89. DOI: 10.1016/j.foreco.2017.12.041
]Otwórz DOISearch in Google Scholar
[
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D. et al., 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. DOI: 10.1038/s41592-019-0686-2705664432015543
]Otwórz DOISearch in Google Scholar
[
Wieting, C., Ebel, B.A., Singha, K., 2017. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology: Regional Studies, 13, 43–57. DOI: 10.1016/j.ejrh.2017.07.006
]Otwórz DOISearch in Google Scholar
[
Žalud, Z., Trnka, M., Hlavinka, P., 2020. Zemědělské sucho v České republice-Vývoj, dopady a adaptace. Agrární komora České republiky.
]Search in Google Scholar
[
Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61, 4, 1024–1030. DOI: 10.2136/sssaj1997.03615995006100040005x
]Otwórz DOISearch in Google Scholar