1. bookVolume 70 (2022): Edition 4 (December 2022)
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Effects of prescribed fire on topsoil properties: a small-scale straw burning experiment

Publié en ligne: 16 Nov 2022
Volume & Edition: Volume 70 (2022) - Edition 4 (December 2022)
Pages: 450 - 461
Reçu: 14 Sep 2022
Accepté: 16 Oct 2022
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais

Alcañiz, M., Outeiro, L., Francos, M., Úbeda, X., 2018. Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613–614, 944–957. DOI: 10.1016/j.scitotenv. 2017.09.144 Ouvrir le DOISearch in Google Scholar

Atchley, A.L., Kinoshita, A.M., Lopez, S.R., Trader, L., Middleton, R, 2018. Simulating surface and subsurface water balance changes due to burn severity. Vadose Zone Journal, 17, 1, 180099. DOI: 10.2136/vzj2018.05.0099 Ouvrir le DOISearch in Google Scholar

Badía, D., Martí, C., 2003. Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils. Arid Land Research and Management, 17, 1, 23–41. DOI: 10.1080/15324980301595 Ouvrir le DOISearch in Google Scholar

Badía, D., Martí, C., Aguirre, A.J., Aznar, J.M., González-Pérez, J.A., De la Rosa, J.M., León, J., Ibarra, P., Echeverría, T., 2014. Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: Changes at cm-scale topsoil. Catena, 113, 267–275. DOI: 10.1016/j.catena.2013.08.002 Ouvrir le DOISearch in Google Scholar

Barroso, P.M., Vaverková, M.D., 2020. Fire effects on soils – A pilot scale study on the soils affected by wildfires in the Czech Republic. Journal of Ecological Engineering, 21, 6, 248–256. DOI: 10.12911/22998993/123471 Ouvrir le DOISearch in Google Scholar

Bennett, L.T., Aponte, C., Baker, T.G., Tolhurst, K.G., 2014. Evaluating long-term effects of prescribed fire regimes on carbon stocks in a temperate eucalypt forest. Forest Ecology and Management, 328, 219–228. DOI: 10.1016/j.foreco.2014.05.028 Ouvrir le DOISearch in Google Scholar

Bird, M.I., Veenendaal, E.M., Moyo, C., Lloyd, J., Frost, P., 2000. Effect of fire and soil texture on soil carbon in a subhumid savanna (Matopos, Zimbabwe). Geoderma, 94, 1, 71–90. DOI: 10.1016/S0016-7061(99)00084-1 Ouvrir le DOISearch in Google Scholar

Blakemore, L.C., 1972. Methods for chemical analysis of soils. Search in Google Scholar

Bogena, H.R., Herbst, M., Huisman, J.A., Rosenbaum, U., Weuthen, A., Vereecken, H., 2010. Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone Journal, 9, 4, 1002–1013. DOI: 10.2136/vzj2009.0173 Ouvrir le DOISearch in Google Scholar

Boyer, W.D., Miller, J.H., 1994. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. Forest Ecology and Management, 70, 311–318.10.1016/0378-1127(94)90096-5 Search in Google Scholar

Brye, K.R., 2006. Soil physiochemical changes following 12 years of annual burning in a humid–subtropical tallgrass prairie: a hypothesis. Acta Oecologica, 30, 3, 407–413. DOI: 10.1016/j.actao.2006.06.001 Ouvrir le DOISearch in Google Scholar

Caon, L., Vallejo, V.R., Ritsema, C.J., Geissen, V., 2014. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, 139, 47–58. DOI: 10.1016/j.earscirev. 2014.09.001 Ouvrir le DOISearch in Google Scholar

Cawson, J.G., Nyman, P., Smith, H.G., Lane, P.N.J., Sheridan, G.J., 2016. How soil temperatures during prescribed burning affect soil water repellency, infiltration and erosion. Geoderma, 278, 12–22. DOI: 10.1016/j.geoderma.2016.05.002 Ouvrir le DOISearch in Google Scholar

Chen, J.J., McGuire, K.J., Stewart, R.D., 2020. Effect of soil water-repellent layer depth on post-wildfire hydrological processes. Hydrological Processes, 34, 2, 270–283. DOI: 10.1002/hyp.13583 Ouvrir le DOISearch in Google Scholar

DeBano, L.F, 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231–232, 195–206. DOI: 10.1016/S0022-1694(00)00194-3 Ouvrir le DOISearch in Google Scholar

Dekker, L.W., Ritsema, C.J., Oostindie, K., Moore, D., Wesseling, J.G., 2009. Methods for determining soil water repellency on field-moist samples. Water Resources Research, 45, 4. DOI: 10.1029/2008WR007070 Ouvrir le DOISearch in Google Scholar

Delač, D., Pereira, P., Bogunović, I., Kisić, I., 2020. Short-Term Effects of Pile Burn on N Dynamic and N Loss in Mediterranean Croatia. Agronomy, 10, 9, 1340. DOI: 10.3390/agronomy10091340 Ouvrir le DOISearch in Google Scholar

Dohnal, M., Dusek, J., Vogel, T., 2010. Improving hydraulic conductivity estimates from minidisk infiltrometer measurements for soils with wide pore-size distributions. Soil Sci. Soc. Am. J., 74, 3, 804–811. DOI: 10.2136/sssaj2009.0099 Ouvrir le DOISearch in Google Scholar

Driessen, P.M., 2001. Lecture notes on the major soils of the world. Rome: FAO (World soil resources reports, 94). Search in Google Scholar

Ebel, B.A., 2012. Wildfire impacts on soil-water retention in the Colorado Front Range, United States. Water Resources Research, 48, W12515. DOI: 10.1029/2012WR012362 Ouvrir le DOISearch in Google Scholar

Ebel, B.A., 2019. Measurement method has a larger impact than spatial scale for plot-scale field-saturated hydraulic conductivity (Kfs) after wildfire and prescribed fire in forests. Earth Surface Processes and Landforms, 44, 10, 1945–1956. DOI: 10.1002/esp.4621 Ouvrir le DOISearch in Google Scholar

Ebel, B.A., 2020. Temporal evolution of measured and simulated infiltration following wildfire in the Colorado Front Range, USA: Shifting thresholds of runoff generation and hydrologic hazards. Journal of Hydrology, 585, 124765. DOI: 10.1016/j.jhydrol.2020.124765 Ouvrir le DOISearch in Google Scholar

Ebel, B.A., Martin, D.A., 2017. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment. Hydrological Processes, 31, 21, 3682–3696. DOI: 10.1002/hyp.11288 Ouvrir le DOISearch in Google Scholar

Ebel, B.A., Moody, J.A., 2020. Parameter estimation for multiple post-wildfire hydrologic models. Hydrological Processes, 34, 21, 4049–4066. DOI: 10.1002/hyp.13865 Ouvrir le DOISearch in Google Scholar

Fire Rescue Service of the Czech Republic, 2020. Statistical Yearbook 2019. Ministry of the Interior, General Directorate Fire Rescue Service of the Czech Republic. Available online at https://www.hzscr.cz/hasicien/article/statisticalyearbooks.aspx Search in Google Scholar

Giovannini, G., Lucchesi, S., 1997. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Science, 162, 7. Available online at https://journals.lww.com/soilsci/Fulltext/1997/07000/Modifications__Induced_In_Soil_Physico_Chemical.3.aspx10.1097/00010694-199707000-00003 Search in Google Scholar

Girona-García, A., Badía-Villas, D., Martí-Dalmau, C., Ortiz- Perpiñá, O., Mora, J.L., Armas-Herrera, C.M., 2018. Effects of prescribed fire for pasture management on soil organic matter and biological properties: A 1-year study case in the Central Pyrenees. Science of the Total Environment, 618, 1079–1087. DOI: 10.1016/j.scitotenv.2017.09.12729122341 Ouvrir le DOISearch in Google Scholar

Godwin, D.R., Kobziar, L.N., Robertson, K.M., 2017. Effects of fire frequency and soil temperature on soil CO2 efflux rates in old-field pine-grassland forests. Forests, 8, 8, 274. DOI: 10.3390/f8080274 Ouvrir le DOISearch in Google Scholar

Hillel, D., 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam, London. Search in Google Scholar

Imeson, A.C., Verstraten, J.M., van Mulligen, E.J., Sevink, J., 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena, 19, 3–4, 345–361. DOI: 10.1016/0341-8162(92)90008-Y Ouvrir le DOISearch in Google Scholar

Johnson, D.W., Curtis, P.S., 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 140, 2–3, 227–238. DOI: 10.1016/S0378-1127(00)00282-6 Ouvrir le DOISearch in Google Scholar

Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A. (Ed.): Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. 2nd Ed. Soil Science Society of America, Madison, WI. Search in Google Scholar

Levene, H., 1960. Contributions to probability and statistics. In: Olkin, I. (Ed.): Stanford Studies in Mathematics and Statistics, 2. Univ. Press, Palo Alto, CA. Search in Google Scholar

Maina, F.Z., Siirila-Woodburn, E.R., 2020. Watersheds dynamics following wildfires: Nonlinear feedbacks and implications on hydrologic responses. Hydrological Processes, 34, 1, 33–50. DOI: 10.1002/hyp.13568 Ouvrir le DOISearch in Google Scholar

Mataix-Solera, J., Doerr, S.H., 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma, 118, 1–2, 77–88. DOI: 10.1016/S0016-7061(03)00185-X Ouvrir le DOISearch in Google Scholar

Moody, J.A., Ebel, B.A., Nyman, P., Martin, D.A., Stoof, C., McKinley, R., 2016. Relations between soil hydraulic properties and burn severity. International Journal of Wildland Fire, 25, 3, 279–293. DOI: 10.1071/WF14062 Ouvrir le DOISearch in Google Scholar

Muqaddas, B., Chen, C.R., Lewis, T., Wild, C., 2016. Temporal dynamics of carbon and nitrogen in the surface soil and forest floor under different prescribed burning regimes. Forest Ecology and Management, 382, 110–119. DOI: 10.1016/j.foreco.2016.10.010 Ouvrir le DOISearch in Google Scholar

Muqaddas, B., Zhou, X.Q., Lewis, T., Wild, C., Chen, C.R., 2015. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Science of the Total Environment, 536, 39–47. DOI: 10.1016/j.scitotenv.2015.07.02326196067 Ouvrir le DOISearch in Google Scholar

Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83, 5. https://journals.lww.com/soilsci/Fulltext/1957/05000/THE_THEORY_OF_INFILTRATION__1__THE_INFILTRATION.2.aspx10.1097/00010694-195705000-00002 Search in Google Scholar

Rab, M.A., 1996. Soil physical and hydrological properties following logging and slash burning in the Eucalyptus regnans forest of southeastern Australia. Forest Ecology and Management, 84, 1–3, 159–176. DOI: 10.1016/0378-1127(96)03740-1 Ouvrir le DOISearch in Google Scholar

Scharenbroch, B.C., Nix, B., Jacobs, K.A., Bowles, M.L., 2012. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma, 183–184, 80–91. DOI: 10.1016/j.geoderma.2012.03.010 Ouvrir le DOISearch in Google Scholar

Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (Complete samples). Biometrika, 52, 3–4, 591. DOI: 10.2307/2333709 Ouvrir le DOISearch in Google Scholar

Silva, J.S., Rego, F.C., Mazzoleni, S., 2006. Soil water dynamics after fire in a Portuguese shrubland. International Journal of Wildland Fire, 15, 1, 99–111. DOI: 10.1071/WF04057 Ouvrir le DOISearch in Google Scholar

Stoof, C.R., Ferreira, A.J.D., Mol, W., van den Berg, J., de Kort, A., Drooger, S., Slingerland, E.C., Mansholt, A.U., Ferreira, C.S.S., Ritsema, C.J., 2015. Soil surface changes increase runoff and erosion risk after a low–moderate severity fire. Geoderma, 239–240, 58–67. DOI: 10.1016/j.geoderma.2014.09.020 Ouvrir le DOISearch in Google Scholar

Stoof, C.R., Wesseling, J.G., Ritsema, C.J., 2010. Effects of fire and ash on soil water retention. Geoderma, 159, 3–4, 276–285. DOI: 10.1016/j.geoderma.2010.08.002 Ouvrir le DOISearch in Google Scholar

Swift Jr., L.W., Elliott, K.J., Ottmar, R.D., Vihnanek, R.E., 1993. Site preparation burning to improve southern Appalachian pine–hardwood stands: fire characteristics and soil erosion, moisture, and temperature. Can. J. For. Res., 23, 10, 2242–2254. DOI: 10.1139/x93-278 Ouvrir le DOISearch in Google Scholar

Taylor, Q.A., Midgley, M.G., 2018. Prescription side effects: Long-term, high-frequency controlled burning enhances nitrogen availability in an Illinois oak-dominated forest. Forest Ecology and Management, 411, 82–89. DOI: 10.1016/j.foreco.2017.12.041 Ouvrir le DOISearch in Google Scholar

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D. et al., 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. DOI: 10.1038/s41592-019-0686-2705664432015543 Ouvrir le DOISearch in Google Scholar

Wieting, C., Ebel, B.A., Singha, K., 2017. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology: Regional Studies, 13, 43–57. DOI: 10.1016/j.ejrh.2017.07.006 Ouvrir le DOISearch in Google Scholar

Žalud, Z., Trnka, M., Hlavinka, P., 2020. Zemědělské sucho v České republice-Vývoj, dopady a adaptace. Agrární komora České republiky. Search in Google Scholar

Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61, 4, 1024–1030. DOI: 10.2136/sssaj1997.03615995006100040005x Ouvrir le DOISearch in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo