Energy Availability and Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of ArkansasFayetteville,
Beth Israel Deaconess Medical Center and Harvard Medical School, Department of NeurologyBoston,
This work is licensed under the Creative Commons Attribution 4.0 International License.
Micali N, Martini MG, Thomas JJ, et al. Lifetime and 12-month prevalence of eating disorders amongst women in mid-life: a population-based study of diagnoses and risk factors. BMC Med. 2017;15:12. https://doi.org/10.1186/s12916-016-0766-4MicaliNMartiniMGThomasJJLifetime and 12-month prevalence of eating disorders amongst women in mid-life: a population-based study of diagnoses and risk factorsBMC Med20171512https://doi.org/10.1186/s12916-016-0766-4Search in Google Scholar
Smink FR, van Hoeken D, Hoek HW. Epidemiology, course, and outcome of eating disorders. Curr Opin Psychiatry. 2013;26(6):543–548. https://doi.org/10.1097/YCO.0b013e328365a24fSminkFRvan HoekenDHoekHWEpidemiology, course, and outcome of eating disordersCurr Opin Psychiatry2013266543548https://doi.org/10.1097/YCO.0b013e328365a24fSearch in Google Scholar
Galmiche M, Déchelotte P, Lambert G, Tavolacci MP. Prevalence of eating disorders over the 2000–2018 period: a systematic literature review. The American Journal of Clinical Nutrition. 2019;109(5): 1402–1413. https://doi.org/10.1093/ajcn/nqy342GalmicheMDéchelottePLambertGTavolacciMPPrevalence of eating disorders over the 2000–2018 period: a systematic literature reviewThe American Journal of Clinical Nutrition2019109514021413https://doi.org/10.1093/ajcn/nqy342Search in Google Scholar
Rosa-Caldwell ME, Eddy KT, Rutkove SB, Breithaupt L. Anorexia nervosa and muscle health: A systematic review of our current understanding and future recommendations for study. The International Journal of Eating Disorders. 2022;56(3):483–500. https://doi.org/10.1002/eat.23878Rosa-CaldwellMEEddyKTRutkoveSBBreithauptLAnorexia nervosa and muscle health: A systematic review of our current understanding and future recommendations for studyThe International Journal of Eating Disorders2022563483500https://doi.org/10.1002/eat.23878Search in Google Scholar
Rosa-Caldwell ME, Breithaupt L, et al. A refined rodent model of anorexia nervosa: Simulating state-specific effects of caloric restriction and weight restoration. Physiological Reports. 2024;12:e16092. https://doi.org/10.14814/phy2.16092Rosa-CaldwellMEBreithauptLA refined rodent model of anorexia nervosa: Simulating state-specific effects of caloric restriction and weight restorationPhysiological Reports202412e16092https://doi.org/10.14814/phy2.16092Search in Google Scholar
Lavalle S, Scapaticci R, Masiello E, et al. Advancements in sarcopenia diagnosis: from imaging techniques to non-radiation assessments. Frontiers in Medical Technology. 2024;6. https://doi.org/10.3389/fmedt.2024.1467155LavalleSScapaticciRMasielloEAdvancements in sarcopenia diagnosis: from imaging techniques to non-radiation assessmentsFrontiers in Medical Technology20246https://doi.org/10.3389/fmedt.2024.1467155Search in Google Scholar
Sanchez B, Rutkove SB. Present Uses, Future Applications, and Technical Underpinnings of Electrical Impedance Myography. Current Neurology and Neuroscience Reports. 2017;17(11):86. https://doi.org/10.1007/s11910-017-0793-3SanchezBRutkoveSBPresent Uses, Future Applications, and Technical Underpinnings of Electrical Impedance MyographyCurrent Neurology and Neuroscience Reports2017171186https://doi.org/10.1007/s11910-017-0793-3Search in Google Scholar
Rutkove SB, Chen ZZ, Pandeya S, et al. Surface Electrical Impedance Myography Detects Skeletal Muscle Atrophy in Aged Wildtype Zebrafish and Aged gpr27 Knockout Zebrafish. Biomedicines. 2023;11(7):1938. https://doi.org/10.3390/biomedicines11071938RutkoveSBChenZZPandeyaSSurface Electrical Impedance Myography Detects Skeletal Muscle Atrophy in Aged Wildtype Zebrafish and Aged gpr27 Knockout ZebrafishBiomedicines20231171938https://doi.org/10.3390/biomedicines11071938Search in Google Scholar
Rutkove SB, Callegari S, Concepcion H, et al. Electrical impedance myography detects age-related skeletal muscle atrophy in adult zebrafish. Scientific Reports. 2023;13(1):7191. https://doi.org/10.1038/s41598-023-34119-6RutkoveSBCallegariSConcepcionHElectrical impedance myography detects age-related skeletal muscle atrophy in adult zebrafishScientific Reports20231317191https://doi.org/10.1038/s41598-023-34119-6Search in Google Scholar
Taruta A, Hiyoshi T, Harada A, Nakashima M. Electrical impedance myography detects progressive pathological alterations in the hindlimb muscle of the PMP22-C3 mice, an animal model of CMT1A. Experimental Neurology. 2025;385:115111. https://doi.org/10.1016/j.expneurol.2024.115111TarutaAHiyoshiTHaradaANakashimaMElectrical impedance myography detects progressive pathological alterations in the hindlimb muscle of the PMP22-C3 mice, an animal model of CMT1AExperimental Neurology2025385115111https://doi.org/10.1016/j.expneurol.2024.115111Search in Google Scholar
Rosa-Caldwell ME, Pandeya S, Mortreux M, Rutkove SB. Predicting muscle function and mass with electrical impedance myography: A study in rat analogs of micro- and partial gravity. Acta Astronautica. 2024;223:384–388. https://doi.org/10.1016/j.actaastro.2024.07.017Rosa-CaldwellMEPandeyaSMortreuxMRutkoveSBPredicting muscle function and mass with electrical impedance myography: A study in rat analogs of micro- and partial gravityActa Astronautica2024223384388https://doi.org/10.1016/j.actaastro.2024.07.017Search in Google Scholar
Chrzanowski SM, Nagy JA, Pandeya S, Rutkove SB. Electrical Impedance Myography Correlates with Functional Measures of Disease Progression in D2-mdx Mice and Boys with Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases. 2023;10(1):81–90. https://doi.org/10.3233/JND-210787ChrzanowskiSMNagyJAPandeyaSRutkoveSBElectrical Impedance Myography Correlates with Functional Measures of Disease Progression in D2-mdx Mice and Boys with Duchenne Muscular DystrophyJournal of Neuromuscular Diseases20231018190https://doi.org/10.3233/JND-210787Search in Google Scholar
Semple C, Riveros D, Dung D-M, Nagy JA, Rutkove SB, Mortreux M. Using Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity Analogs. Frontiers in Physiology. 2020;11. https://doi.org/10.3389/fphys.2020.557796SempleCRiverosDDungD-MNagyJARutkoveSBMortreuxMUsing Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity AnalogsFrontiers in Physiology202011https://doi.org/10.3389/fphys.2020.557796Search in Google Scholar
Mortreux M, Rosa-Caldwell ME, Stiehl ID, et al. Hindlimb suspension in Wistar rats: Sex-based differences in muscle response. Physiological Reports. 2021;9(19):e15042. https://doi.org/10.14814/phy2.15042MortreuxMRosa-CaldwellMEStiehlIDHindlimb suspension in Wistar rats: Sex-based differences in muscle responsePhysiological Reports2021919e15042https://doi.org/10.14814/phy2.15042Search in Google Scholar
Rosa-Caldwell ME, Mortreux M, Wadhwa A, et al. Influence of gonadectomy on muscle health in micro- and partial-gravity environments in rats. Journal of Applied Physiology. 2023;134(6):1438–1449. https://doi.org/10.1152/japplphysiol.00023.2023Rosa-CaldwellMEMortreuxMWadhwaAInfluence of gonadectomy on muscle health in micro- and partial-gravity environments in ratsJournal of Applied Physiology2023134614381449https://doi.org/10.1152/japplphysiol.00023.2023Search in Google Scholar
Rosa-Caldwell ME, Mortreux M, Wadhwa A, et al. Sex differences in muscle health in simulated micro- and partial-gravity environments in rats. Sports Medicine and Health Science. 2023;5(4):319–328. https://doi.org/10.1016/j.smhs.2023.09.002Rosa-CaldwellMEMortreuxMWadhwaASex differences in muscle health in simulated micro- and partial-gravity environments in ratsSports Medicine and Health Science202354319328https://doi.org/10.1016/j.smhs.2023.09.002Search in Google Scholar
Mortreux M, Semple C, Riveros D, Nagy JA, Rutkove SB. Electrical impedance myography for the detection of muscle inflammation induced by lambda-carrageenan. PLoS One. 2019;14(10):e0223265. https://doi.org/10.1371/journal.pone.0223265MortreuxMSempleCRiverosDNagyJARutkoveSBElectrical impedance myography for the detection of muscle inflammation induced by lambda-carrageenanPLoS One20191410e0223265https://doi.org/10.1371/journal.pone.0223265Search in Google Scholar
Ayllón D, Gil-Pita R, Seoane F. Detection and Classification of Measurement Errors in Bioimpedance Spectroscopy. PloS One. 2016;11(6): e0156522. https://doi.org/10.1371/journal.pone.0156522AyllónDGil-PitaRSeoaneFDetection and Classification of Measurement Errors in Bioimpedance SpectroscopyPloS One2016116e0156522https://doi.org/10.1371/journal.pone.0156522Search in Google Scholar
Wang Y, Freedman L, Buck M, Bohorquez J, Rutkove SB, Keel J. Electrical Impedance Myography for Assessing Paraspinal Muscles of Patients with Low Back Pain. Journal of Electrical Bioimpedance. 2019;10(1):103–109. https://doi.org/10.2478/joeb-2019-0015WangYFreedmanLBuckMBohorquezJRutkoveSBKeelJElectrical Impedance Myography for Assessing Paraspinal Muscles of Patients with Low Back PainJournal of Electrical Bioimpedance2019101103109https://doi.org/10.2478/joeb-2019-0015Search in Google Scholar
Rutkove SB, Fogerson PM, Garmirian LP, Tarulli AW. Reference values for 50-kHz electrical impedance myography. Muscle & Nerve. 2008;38(3):1128–1132. https://doi.org/10.1002/mus.21075RutkoveSBFogersonPMGarmirianLPTarulliAWReference values for 50-kHz electrical impedance myographyMuscle & Nerve200838311281132https://doi.org/10.1002/mus.21075Search in Google Scholar
Hiyoshi T, Zhao F, Baba R, et al. Electrical impedance myography detects dystrophin-related muscle changes in mdx mice. Skeletal Muscle. 2023;13(1):19. https://doi.org/10.1186/s13395-023-00331-1HiyoshiTZhaoFBabaRElectrical impedance myography detects dystrophin-related muscle changes in mdx miceSkeletal Muscle202313119https://doi.org/10.1186/s13395-023-00331-1Search in Google Scholar
Lechtig A, Hanna P, Nagy JA, Wixted J, Nazarian A, Rutkove SB. Electrical impedance myography for the early detection of muscle ischemia secondary to compartment syndrome: a study in a rat model. Scientific Reports. 2023;13(1):18252. https://doi.org/10.1038/s41598-023-45209-wLechtigAHannaPNagyJAWixtedJNazarianARutkoveSBElectrical impedance myography for the early detection of muscle ischemia secondary to compartment syndrome: a study in a rat modelScientific Reports202313118252https://doi.org/10.1038/s41598-023-45209-wSearch in Google Scholar
Albano D, Gitto S, Vitale J, et al. Knee Muscles Composition Using Electrical Impedance Myography and Magnetic Resonance Imaging. Diagnostics. 2022;12(9):2217. https://doi.org/10.3390/diagnostics12092217AlbanoDGittoSVitaleJKnee Muscles Composition Using Electrical Impedance Myography and Magnetic Resonance ImagingDiagnostics20221292217https://doi.org/10.3390/diagnostics12092217Search in Google Scholar
Schwartz S, Geisbush TR, Mijailovic A, Pasternak A, Darras BT, Rutkove SB. Optimizing electrical impedance myography measurements by using a multifrequency ratio: a study in Duchenne muscular dystrophy. Clinical Neurophysiology. 2015;126(1):202–208. https://doi.org/10.1016/j.clinph.2014.05.007SchwartzSGeisbushTRMijailovicAPasternakADarrasBTRutkoveSBOptimizing electrical impedance myography measurements by using a multifrequency ratio: a study in Duchenne muscular dystrophyClinical Neurophysiology20151261202208https://doi.org/10.1016/j.clinph.2014.05.007Search in Google Scholar
Clark-Matott J, Nagy JA, Sanchez B, et al. Altered muscle electrical tissue properties in a mouse model of premature aging. Muscle & Nerve. 2019;60(6):801–810. https://doi.org/10.1002/mus.26714Clark-MatottJNagyJASanchezBAltered muscle electrical tissue properties in a mouse model of premature agingMuscle & Nerve2019606801810https://doi.org/10.1002/mus.26714Search in Google Scholar
Nagy JA, Kapur K, Taylor RS, Sanchez B, Rutkove SB. Electrical impedance myography as a biomarker of myostatin inhibition with ActRIIB-mFc: a study in wild-type mice. Future Science OA. 2018;4(6): FSO308. https://doi.org/10.4155/fsoa-2018-0002NagyJAKapurKTaylorRSSanchezBRutkoveSBElectrical impedance myography as a biomarker of myostatin inhibition with ActRIIB-mFc: a study in wild-type miceFuture Science OA201846FSO308https://doi.org/10.4155/fsoa-2018-0002Search in Google Scholar
Arnold WD, Taylor RS, Li J, Nagy JA, Sanchez B, Rutkove SB. Electrical impedance myography detects age-related muscle change in mice. PloS One. 2017;12(10):e0185614. https://doi.org/10.1371/journal.pone.0185614ArnoldWDTaylorRSLiJNagyJASanchezBRutkoveSBElectrical impedance myography detects age-related muscle change in micePloS One20171210e0185614https://doi.org/10.1371/journal.pone.0185614Search in Google Scholar
Wang LL, Spieker AJ, Li J, Rutkove SB. Electrical impedance myography for monitoring motor neuron loss in the SOD1 G93A amyotrophic lateral sclerosis rat. Clinical Neurophysiology. 2011;122(12):2505–2511. https://doi.org/10.1016/j.clinph.2011.04.021WangLLSpiekerAJLiJRutkoveSBElectrical impedance myography for monitoring motor neuron loss in the SOD1 G93A amyotrophic lateral sclerosis ratClinical Neurophysiology20111221225052511https://doi.org/10.1016/j.clinph.2011.04.021Search in Google Scholar
Hooijmans MT, Niks EH, Burakiewicz J, et al. Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy. Neuromuscular Disorders : NMD. 2017;27(5):458–464. https://doi.org/10.1016/j.nmd.2017.02.009HooijmansMTNiksEHBurakiewiczJNon-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophyNeuromuscular Disorders : NMD2017275458464https://doi.org/10.1016/j.nmd.2017.02.009Search in Google Scholar
Clark BC, Rutkove S, Lupton EC, Padilla CJ, Arnold WD. Potential Utility of Electrical Impedance Myography in Evaluating Age-Related Skeletal Muscle Function Deficits. Frontiers in Physiology. 2021;12. https://doi.org/10.3389/fphys.2021.666964ClarkBCRutkoveSLuptonECPadillaCJArnoldWDPotential Utility of Electrical Impedance Myography in Evaluating Age-Related Skeletal Muscle Function DeficitsFrontiers in Physiology202112https://doi.org/10.3389/fphys.2021.666964Search in Google Scholar
Mortreux M, Rosa-Caldwell ME. Approaching Gravity as a Continuum Using the Rat Partial Weight-Bearing Model. Life. 2020;10(10):235. https://doi.org/10.3390/life10100235MortreuxMRosa-CaldwellMEApproaching Gravity as a Continuum Using the Rat Partial Weight-Bearing ModelLife20201010235https://doi.org/10.3390/life10100235Search in Google Scholar
Mortreux M, Ko FC, Riveros D, Bouxsein ML, Rutkove SB. Longitudinal time course of muscle impairments during partial weight-bearing in rats. NPJ Microgravity. 2019;5:20. https://doi.org/10.1038/s41526-019-0080-5MortreuxMKoFCRiverosDBouxseinMLRutkoveSBLongitudinal time course of muscle impairments during partial weight-bearing in ratsNPJ Microgravity2019520https://doi.org/10.1038/s41526-019-0080-5Search in Google Scholar
Pandeya SR, Nagy JA, Riveros D, et al. Relationships between in vivo surface and ex vivo electrical impedance myography measurements in three different neuromuscular disorder mouse models. PloS One. 2021;16(10): e0259071. https://doi.org/10.1371/journal.pone.0259071PandeyaSRNagyJARiverosDRelationships between in vivo surface and ex vivo electrical impedance myography measurements in three different neuromuscular disorder mouse modelsPloS One20211610e0259071https://doi.org/10.1371/journal.pone.0259071Search in Google Scholar