Accesso libero

Electrical impedance myography as a marker of muscle mass in rats with simulated Anorexia Nervosa

, ,  e   
06 ago 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Micali N, Martini MG, Thomas JJ, et al. Lifetime and 12-month prevalence of eating disorders amongst women in mid-life: a population-based study of diagnoses and risk factors. BMC Med. 2017;15:12. https://doi.org/10.1186/s12916-016-0766-4 MicaliN MartiniMG ThomasJJ Lifetime and 12-month prevalence of eating disorders amongst women in mid-life: a population-based study of diagnoses and risk factors BMC Med 2017 15 12 https://doi.org/10.1186/s12916-016-0766-4 Search in Google Scholar

Smink FR, van Hoeken D, Hoek HW. Epidemiology, course, and outcome of eating disorders. Curr Opin Psychiatry. 2013;26(6):543–548. https://doi.org/10.1097/YCO.0b013e328365a24f SminkFR van HoekenD HoekHW Epidemiology, course, and outcome of eating disorders Curr Opin Psychiatry 2013 26 6 543 548 https://doi.org/10.1097/YCO.0b013e328365a24f Search in Google Scholar

Galmiche M, Déchelotte P, Lambert G, Tavolacci MP. Prevalence of eating disorders over the 2000–2018 period: a systematic literature review. The American Journal of Clinical Nutrition. 2019;109(5): 1402–1413. https://doi.org/10.1093/ajcn/nqy342 GalmicheM DéchelotteP LambertG TavolacciMP Prevalence of eating disorders over the 2000–2018 period: a systematic literature review The American Journal of Clinical Nutrition 2019 109 5 1402 1413 https://doi.org/10.1093/ajcn/nqy342 Search in Google Scholar

Rosa-Caldwell ME, Eddy KT, Rutkove SB, Breithaupt L. Anorexia nervosa and muscle health: A systematic review of our current understanding and future recommendations for study. The International Journal of Eating Disorders. 2022;56(3):483–500. https://doi.org/10.1002/eat.23878 Rosa-CaldwellME EddyKT RutkoveSB BreithauptL Anorexia nervosa and muscle health: A systematic review of our current understanding and future recommendations for study The International Journal of Eating Disorders 2022 56 3 483 500 https://doi.org/10.1002/eat.23878 Search in Google Scholar

Rosa-Caldwell ME, Breithaupt L, et al. A refined rodent model of anorexia nervosa: Simulating state-specific effects of caloric restriction and weight restoration. Physiological Reports. 2024;12:e16092. https://doi.org/10.14814/phy2.16092 Rosa-CaldwellME BreithauptL A refined rodent model of anorexia nervosa: Simulating state-specific effects of caloric restriction and weight restoration Physiological Reports 2024 12 e16092 https://doi.org/10.14814/phy2.16092 Search in Google Scholar

Lavalle S, Scapaticci R, Masiello E, et al. Advancements in sarcopenia diagnosis: from imaging techniques to non-radiation assessments. Frontiers in Medical Technology. 2024;6. https://doi.org/10.3389/fmedt.2024.1467155 LavalleS ScapaticciR MasielloE Advancements in sarcopenia diagnosis: from imaging techniques to non-radiation assessments Frontiers in Medical Technology 2024 6 https://doi.org/10.3389/fmedt.2024.1467155 Search in Google Scholar

Sanchez B, Rutkove SB. Present Uses, Future Applications, and Technical Underpinnings of Electrical Impedance Myography. Current Neurology and Neuroscience Reports. 2017;17(11):86. https://doi.org/10.1007/s11910-017-0793-3 SanchezB RutkoveSB Present Uses, Future Applications, and Technical Underpinnings of Electrical Impedance Myography Current Neurology and Neuroscience Reports 2017 17 11 86 https://doi.org/10.1007/s11910-017-0793-3 Search in Google Scholar

Rutkove SB, Chen ZZ, Pandeya S, et al. Surface Electrical Impedance Myography Detects Skeletal Muscle Atrophy in Aged Wildtype Zebrafish and Aged gpr27 Knockout Zebrafish. Biomedicines. 2023;11(7):1938. https://doi.org/10.3390/biomedicines11071938 RutkoveSB ChenZZ PandeyaS Surface Electrical Impedance Myography Detects Skeletal Muscle Atrophy in Aged Wildtype Zebrafish and Aged gpr27 Knockout Zebrafish Biomedicines 2023 11 7 1938 https://doi.org/10.3390/biomedicines11071938 Search in Google Scholar

Rutkove SB, Callegari S, Concepcion H, et al. Electrical impedance myography detects age-related skeletal muscle atrophy in adult zebrafish. Scientific Reports. 2023;13(1):7191. https://doi.org/10.1038/s41598-023-34119-6 RutkoveSB CallegariS ConcepcionH Electrical impedance myography detects age-related skeletal muscle atrophy in adult zebrafish Scientific Reports 2023 13 1 7191 https://doi.org/10.1038/s41598-023-34119-6 Search in Google Scholar

Taruta A, Hiyoshi T, Harada A, Nakashima M. Electrical impedance myography detects progressive pathological alterations in the hindlimb muscle of the PMP22-C3 mice, an animal model of CMT1A. Experimental Neurology. 2025;385:115111. https://doi.org/10.1016/j.expneurol.2024.115111 TarutaA HiyoshiT HaradaA NakashimaM Electrical impedance myography detects progressive pathological alterations in the hindlimb muscle of the PMP22-C3 mice, an animal model of CMT1A Experimental Neurology 2025 385 115111 https://doi.org/10.1016/j.expneurol.2024.115111 Search in Google Scholar

Rosa-Caldwell ME, Pandeya S, Mortreux M, Rutkove SB. Predicting muscle function and mass with electrical impedance myography: A study in rat analogs of micro- and partial gravity. Acta Astronautica. 2024;223:384–388. https://doi.org/10.1016/j.actaastro.2024.07.017 Rosa-CaldwellME PandeyaS MortreuxM RutkoveSB Predicting muscle function and mass with electrical impedance myography: A study in rat analogs of micro- and partial gravity Acta Astronautica 2024 223 384 388 https://doi.org/10.1016/j.actaastro.2024.07.017 Search in Google Scholar

Chrzanowski SM, Nagy JA, Pandeya S, Rutkove SB. Electrical Impedance Myography Correlates with Functional Measures of Disease Progression in D2-mdx Mice and Boys with Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases. 2023;10(1):81–90. https://doi.org/10.3233/JND-210787 ChrzanowskiSM NagyJA PandeyaS RutkoveSB Electrical Impedance Myography Correlates with Functional Measures of Disease Progression in D2-mdx Mice and Boys with Duchenne Muscular Dystrophy Journal of Neuromuscular Diseases 2023 10 1 81 90 https://doi.org/10.3233/JND-210787 Search in Google Scholar

Semple C, Riveros D, Dung D-M, Nagy JA, Rutkove SB, Mortreux M. Using Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity Analogs. Frontiers in Physiology. 2020;11. https://doi.org/10.3389/fphys.2020.557796 SempleC RiverosD DungD-M NagyJA RutkoveSB MortreuxM Using Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity Analogs Frontiers in Physiology 2020 11 https://doi.org/10.3389/fphys.2020.557796 Search in Google Scholar

Mortreux M, Rosa-Caldwell ME, Stiehl ID, et al. Hindlimb suspension in Wistar rats: Sex-based differences in muscle response. Physiological Reports. 2021;9(19):e15042. https://doi.org/10.14814/phy2.15042 MortreuxM Rosa-CaldwellME StiehlID Hindlimb suspension in Wistar rats: Sex-based differences in muscle response Physiological Reports 2021 9 19 e15042 https://doi.org/10.14814/phy2.15042 Search in Google Scholar

Rosa-Caldwell ME, Mortreux M, Wadhwa A, et al. Influence of gonadectomy on muscle health in micro- and partial-gravity environments in rats. Journal of Applied Physiology. 2023;134(6):1438–1449. https://doi.org/10.1152/japplphysiol.00023.2023 Rosa-CaldwellME MortreuxM WadhwaA Influence of gonadectomy on muscle health in micro- and partial-gravity environments in rats Journal of Applied Physiology 2023 134 6 1438 1449 https://doi.org/10.1152/japplphysiol.00023.2023 Search in Google Scholar

Rosa-Caldwell ME, Mortreux M, Wadhwa A, et al. Sex differences in muscle health in simulated micro- and partial-gravity environments in rats. Sports Medicine and Health Science. 2023;5(4):319–328. https://doi.org/10.1016/j.smhs.2023.09.002 Rosa-CaldwellME MortreuxM WadhwaA Sex differences in muscle health in simulated micro- and partial-gravity environments in rats Sports Medicine and Health Science 2023 5 4 319 328 https://doi.org/10.1016/j.smhs.2023.09.002 Search in Google Scholar

Mortreux M, Semple C, Riveros D, Nagy JA, Rutkove SB. Electrical impedance myography for the detection of muscle inflammation induced by lambda-carrageenan. PLoS One. 2019;14(10):e0223265. https://doi.org/10.1371/journal.pone.0223265 MortreuxM SempleC RiverosD NagyJA RutkoveSB Electrical impedance myography for the detection of muscle inflammation induced by lambda-carrageenan PLoS One 2019 14 10 e0223265 https://doi.org/10.1371/journal.pone.0223265 Search in Google Scholar

Ayllón D, Gil-Pita R, Seoane F. Detection and Classification of Measurement Errors in Bioimpedance Spectroscopy. PloS One. 2016;11(6): e0156522. https://doi.org/10.1371/journal.pone.0156522 AyllónD Gil-PitaR SeoaneF Detection and Classification of Measurement Errors in Bioimpedance Spectroscopy PloS One 2016 11 6 e0156522 https://doi.org/10.1371/journal.pone.0156522 Search in Google Scholar

Wang Y, Freedman L, Buck M, Bohorquez J, Rutkove SB, Keel J. Electrical Impedance Myography for Assessing Paraspinal Muscles of Patients with Low Back Pain. Journal of Electrical Bioimpedance. 2019;10(1):103–109. https://doi.org/10.2478/joeb-2019-0015 WangY FreedmanL BuckM BohorquezJ RutkoveSB KeelJ Electrical Impedance Myography for Assessing Paraspinal Muscles of Patients with Low Back Pain Journal of Electrical Bioimpedance 2019 10 1 103 109 https://doi.org/10.2478/joeb-2019-0015 Search in Google Scholar

Rutkove SB, Fogerson PM, Garmirian LP, Tarulli AW. Reference values for 50-kHz electrical impedance myography. Muscle & Nerve. 2008;38(3):1128–1132. https://doi.org/10.1002/mus.21075 RutkoveSB FogersonPM GarmirianLP TarulliAW Reference values for 50-kHz electrical impedance myography Muscle & Nerve 2008 38 3 1128 1132 https://doi.org/10.1002/mus.21075 Search in Google Scholar

Hiyoshi T, Zhao F, Baba R, et al. Electrical impedance myography detects dystrophin-related muscle changes in mdx mice. Skeletal Muscle. 2023;13(1):19. https://doi.org/10.1186/s13395-023-00331-1 HiyoshiT ZhaoF BabaR Electrical impedance myography detects dystrophin-related muscle changes in mdx mice Skeletal Muscle 2023 13 1 19 https://doi.org/10.1186/s13395-023-00331-1 Search in Google Scholar

Lechtig A, Hanna P, Nagy JA, Wixted J, Nazarian A, Rutkove SB. Electrical impedance myography for the early detection of muscle ischemia secondary to compartment syndrome: a study in a rat model. Scientific Reports. 2023;13(1):18252. https://doi.org/10.1038/s41598-023-45209-w LechtigA HannaP NagyJA WixtedJ NazarianA RutkoveSB Electrical impedance myography for the early detection of muscle ischemia secondary to compartment syndrome: a study in a rat model Scientific Reports 2023 13 1 18252 https://doi.org/10.1038/s41598-023-45209-w Search in Google Scholar

Albano D, Gitto S, Vitale J, et al. Knee Muscles Composition Using Electrical Impedance Myography and Magnetic Resonance Imaging. Diagnostics. 2022;12(9):2217. https://doi.org/10.3390/diagnostics12092217 AlbanoD GittoS VitaleJ Knee Muscles Composition Using Electrical Impedance Myography and Magnetic Resonance Imaging Diagnostics 2022 12 9 2217 https://doi.org/10.3390/diagnostics12092217 Search in Google Scholar

Schwartz S, Geisbush TR, Mijailovic A, Pasternak A, Darras BT, Rutkove SB. Optimizing electrical impedance myography measurements by using a multifrequency ratio: a study in Duchenne muscular dystrophy. Clinical Neurophysiology. 2015;126(1):202–208. https://doi.org/10.1016/j.clinph.2014.05.007 SchwartzS GeisbushTR MijailovicA PasternakA DarrasBT RutkoveSB Optimizing electrical impedance myography measurements by using a multifrequency ratio: a study in Duchenne muscular dystrophy Clinical Neurophysiology 2015 126 1 202 208 https://doi.org/10.1016/j.clinph.2014.05.007 Search in Google Scholar

Clark-Matott J, Nagy JA, Sanchez B, et al. Altered muscle electrical tissue properties in a mouse model of premature aging. Muscle & Nerve. 2019;60(6):801–810. https://doi.org/10.1002/mus.26714 Clark-MatottJ NagyJA SanchezB Altered muscle electrical tissue properties in a mouse model of premature aging Muscle & Nerve 2019 60 6 801 810 https://doi.org/10.1002/mus.26714 Search in Google Scholar

Nagy JA, Kapur K, Taylor RS, Sanchez B, Rutkove SB. Electrical impedance myography as a biomarker of myostatin inhibition with ActRIIB-mFc: a study in wild-type mice. Future Science OA. 2018;4(6): FSO308. https://doi.org/10.4155/fsoa-2018-0002 NagyJA KapurK TaylorRS SanchezB RutkoveSB Electrical impedance myography as a biomarker of myostatin inhibition with ActRIIB-mFc: a study in wild-type mice Future Science OA 2018 4 6 FSO308 https://doi.org/10.4155/fsoa-2018-0002 Search in Google Scholar

Arnold WD, Taylor RS, Li J, Nagy JA, Sanchez B, Rutkove SB. Electrical impedance myography detects age-related muscle change in mice. PloS One. 2017;12(10):e0185614. https://doi.org/10.1371/journal.pone.0185614 ArnoldWD TaylorRS LiJ NagyJA SanchezB RutkoveSB Electrical impedance myography detects age-related muscle change in mice PloS One 2017 12 10 e0185614 https://doi.org/10.1371/journal.pone.0185614 Search in Google Scholar

Wang LL, Spieker AJ, Li J, Rutkove SB. Electrical impedance myography for monitoring motor neuron loss in the SOD1 G93A amyotrophic lateral sclerosis rat. Clinical Neurophysiology. 2011;122(12):2505–2511. https://doi.org/10.1016/j.clinph.2011.04.021 WangLL SpiekerAJ LiJ RutkoveSB Electrical impedance myography for monitoring motor neuron loss in the SOD1 G93A amyotrophic lateral sclerosis rat Clinical Neurophysiology 2011 122 12 2505 2511 https://doi.org/10.1016/j.clinph.2011.04.021 Search in Google Scholar

Hooijmans MT, Niks EH, Burakiewicz J, et al. Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy. Neuromuscular Disorders : NMD. 2017;27(5):458–464. https://doi.org/10.1016/j.nmd.2017.02.009 HooijmansMT NiksEH BurakiewiczJ Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy Neuromuscular Disorders : NMD 2017 27 5 458 464 https://doi.org/10.1016/j.nmd.2017.02.009 Search in Google Scholar

Clark BC, Rutkove S, Lupton EC, Padilla CJ, Arnold WD. Potential Utility of Electrical Impedance Myography in Evaluating Age-Related Skeletal Muscle Function Deficits. Frontiers in Physiology. 2021;12. https://doi.org/10.3389/fphys.2021.666964 ClarkBC RutkoveS LuptonEC PadillaCJ ArnoldWD Potential Utility of Electrical Impedance Myography in Evaluating Age-Related Skeletal Muscle Function Deficits Frontiers in Physiology 2021 12 https://doi.org/10.3389/fphys.2021.666964 Search in Google Scholar

Mortreux M, Rosa-Caldwell ME. Approaching Gravity as a Continuum Using the Rat Partial Weight-Bearing Model. Life. 2020;10(10):235. https://doi.org/10.3390/life10100235 MortreuxM Rosa-CaldwellME Approaching Gravity as a Continuum Using the Rat Partial Weight-Bearing Model Life 2020 10 10 235 https://doi.org/10.3390/life10100235 Search in Google Scholar

Mortreux M, Ko FC, Riveros D, Bouxsein ML, Rutkove SB. Longitudinal time course of muscle impairments during partial weight-bearing in rats. NPJ Microgravity. 2019;5:20. https://doi.org/10.1038/s41526-019-0080-5 MortreuxM KoFC RiverosD BouxseinML RutkoveSB Longitudinal time course of muscle impairments during partial weight-bearing in rats NPJ Microgravity 2019 5 20 https://doi.org/10.1038/s41526-019-0080-5 Search in Google Scholar

Pandeya SR, Nagy JA, Riveros D, et al. Relationships between in vivo surface and ex vivo electrical impedance myography measurements in three different neuromuscular disorder mouse models. PloS One. 2021;16(10): e0259071. https://doi.org/10.1371/journal.pone.0259071 PandeyaSR NagyJA RiverosD Relationships between in vivo surface and ex vivo electrical impedance myography measurements in three different neuromuscular disorder mouse models PloS One 2021 16 10 e0259071 https://doi.org/10.1371/journal.pone.0259071 Search in Google Scholar