Otwarty dostęp

Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort

, , , , ,  oraz   
04 sie 2025

Zacytuj
Pobierz okładkę

Fig. 1:

Confusion matrix of trained models: a) Health status, b) BIVA status, c) quartile and d) centile responses.
Confusion matrix of trained models: a) Health status, b) BIVA status, c) quartile and d) centile responses.

Fig. 2:

Feature importance of trained models: a) Health status, b) BIVA Status, c) quartile and d) centile responses.
Feature importance of trained models: a) Health status, b) BIVA Status, c) quartile and d) centile responses.

Fig. 3:

Response vs predicted plot of the selected responses.
Response vs predicted plot of the selected responses.

Fig. 4:

observable and predictions of Zc, θc, Xcc and Rc across various categories: Health Status (Cancer, Healthy), Sex, Quartile (1, 2, 3, 4), Centile (50, 75,95 and 100%), and BIVA status (11, 12, 13, 14, 21, 22, 23, 31, 32, 33, 41, 42, 43, 44).
observable and predictions of Zc, θc, Xcc and Rc across various categories: Health Status (Cancer, Healthy), Sex, Quartile (1, 2, 3, 4), Centile (50, 75,95 and 100%), and BIVA status (11, 12, 13, 14, 21, 22, 23, 31, 32, 33, 41, 42, 43, 44).

Fig. 5:

Schematic representation of BIA vector analysis (BIVA), presenting the maximum and minimum values of Zc, θc, Xcc and Rc (relative to their respective medians).
Schematic representation of BIA vector analysis (BIVA), presenting the maximum and minimum values of Zc, θc, Xcc and Rc (relative to their respective medians).

Response models and their respective metrics for the classification of health status and location variables_ The column Class includes Health Status (Cancer, Healthy), Quartile (1, 2, 3, 4), Centile (50, 75, 95, and 100%), and BIVA status (11, 12, 13, 14, 21, 22, 23, 31, 32, 33, 41, 42, 43, 44)_

Response Model Accuracy Class Precision Recall F1-score
Health status Fine Tree 92.80% Cancer 0.912 0.951 0.931
Healthy 0.947 0.905 0.926
BIVA status Fine Tree 99.50% 11 1.000 1.000 1.000
12 1.000 1.000 1.000
13 1.000 1.000 1.000
14 1.000 1.000 1.000
21 1.000 1.000 1.000
22 1.000 1.000 1.000
23 0.857 0.750 0.800
31 1.000 1.000 1.000
32 1.000 1.000 1.000
33 0.889 0.941 0.914
41 1.000 1.000 1.000
42 1.000 1.000 1.000
43 1.000 1.000 1.000
44 1.000 1.000 1.000
Quartile Linear SVM 100% 1 1.000 1.000 1.000
2 1.000 0.983 0.991
3 0.990 1.000 0.995
4 1.000 1.000 1.000
Centile RUS Boosted Tree 97% 50% 0.988 0.984 0.986
75% 0.959 0.953 0.956
95% 0.948 0.938 0.943
100% 0.957 1.000 0.978

Accuracy parameters of each model_

Response Model R2 RMSE MSE MAE
Zc (Ω) Linear 1.000 0.351(Ω2) 0.123 (Ω) 0.233 (Ω)
θc (°) Linear 0.980 0.237 (°2) 0.056 (°) 0.166 (°)
Xcc (Ω) Linear SVM 0.990 2.378 (Ω2) 5.652 (Ω) 1.674 (Ω)
Rc (Ω) Linear SVM 1.000 4.216 (Ω2) 17.773 (Ω) 3.223 (Ω)