Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort
, , , , , y
04 ago 2025
Acerca de este artículo
Publicado en línea: 04 ago 2025
Páginas: 89 - 98
Recibido: 10 ene 2025
DOI: https://doi.org/10.2478/joeb-2025-0012
Palabras clave
© 2025 Jose Luis García Bello et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Response models and their respective metrics for the classification of health status and location variables_ The column Class includes Health Status (Cancer, Healthy), Quartile (1, 2, 3, 4), Centile (50, 75, 95, and 100%), and BIVA status (11, 12, 13, 14, 21, 22, 23, 31, 32, 33, 41, 42, 43, 44)_
Health status | Fine Tree | 92.80% | Cancer | 0.912 | 0.951 | 0.931 |
Healthy | 0.947 | 0.905 | 0.926 | |||
BIVA status | Fine Tree | 99.50% | 11 | 1.000 | 1.000 | 1.000 |
12 | 1.000 | 1.000 | 1.000 | |||
13 | 1.000 | 1.000 | 1.000 | |||
14 | 1.000 | 1.000 | 1.000 | |||
21 | 1.000 | 1.000 | 1.000 | |||
22 | 1.000 | 1.000 | 1.000 | |||
23 | 0.857 | 0.750 | 0.800 | |||
31 | 1.000 | 1.000 | 1.000 | |||
32 | 1.000 | 1.000 | 1.000 | |||
33 | 0.889 | 0.941 | 0.914 | |||
41 | 1.000 | 1.000 | 1.000 | |||
42 | 1.000 | 1.000 | 1.000 | |||
43 | 1.000 | 1.000 | 1.000 | |||
44 | 1.000 | 1.000 | 1.000 | |||
Quartile | Linear SVM | 100% | 1 | 1.000 | 1.000 | 1.000 |
2 | 1.000 | 0.983 | 0.991 | |||
3 | 0.990 | 1.000 | 0.995 | |||
4 | 1.000 | 1.000 | 1.000 | |||
Centile | RUS Boosted Tree | 97% | 50% | 0.988 | 0.984 | 0.986 |
75% | 0.959 | 0.953 | 0.956 | |||
95% | 0.948 | 0.938 | 0.943 | |||
100% | 0.957 | 1.000 | 0.978 |
Accuracy parameters of each model_
Zc (Ω) | Linear | 1.000 | 0.351(Ω2) | 0.123 (Ω) | 0.233 (Ω) |
Linear | 0.980 | 0.237 (°2) | 0.056 (°) | 0.166 (°) | |
Xcc (Ω) | Linear SVM | 0.990 | 2.378 (Ω2) | 5.652 (Ω) | 1.674 (Ω) |
Rc (Ω) | Linear SVM | 1.000 | 4.216 (Ω2) | 17.773 (Ω) | 3.223 (Ω) |