Otwarty dostęp

Effects of temperature on electrical impedance of biological tissues: ex-vivo measurements

, ,  oraz   
17 wrz 2024

Zacytuj
Pobierz okładkę

Martinsen OG, Heiskanen A. Bioimpedance and bioelectricity basics. 4th ed. Elsevier; 2023. https://doi.org/10.1016/B978-0-12-819107-1.00004-2 Martinsen OG Heiskanen A. Bioimpedance and bioelectricity basics . 4th ed. Elsevier ; 2023 . https://doi.org/10.1016/B978-0-12-819107-1.00004-2 Search in Google Scholar

Pethig R. Electrical properties of biological tissue. Modern Bioelectricity. CRC Press; 2020. p. 125-79. Pethig R. Electrical properties of biological tissue . Modern Bioelectricity . CRC Pressy ; 2020 . p. 125 79 . Search in Google Scholar

Foster KR, Schwan HP. Dielectric properties of tissues. CRC handbook of biological effects of electromagnetic fields. 2019:27-96. Foster KR Schwan HP. Dielectric properties of tissues . CRC handbook of biological effects of electromagnetic fields . 2019 : 27 96 . Search in Google Scholar

Gabriel C. Dielectric properties of biological materials. Bioengineering and Biophysical Aspects of Electromagnetic Fields. 3rd Ed. CRC Press, 2018:87-136. https://doi.org/10.1201/9781315221540-11 Gabriel C. Dielectric properties of biological materials . Bioengineering and Biophysical Aspects of Electromagnetic Fields . 3rd Ed. CRC Press , 2018 : 87 136 . https://doi.org/10.1201/9781315221540-11 Search in Google Scholar

Brown BH, Milnes P, Abdul S, Tidy JA. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study. BJOG: An International Journal of Obstetrics & Gynaecology. 2005;112(6):802-6. https://doi.org/10.1111/j.1471-0528.2004.00530.x Brown BH Milnes P Abdul S Tidy JA. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study . BJOG: An International Journal of Obstetrics & Gynaecology . 2005 ; 112 ( 6 ): 802 6 . https://doi.org/10.1111/j.1471-0528.2004.00530.x Search in Google Scholar

Jossinet J. The impedivity of freshly excised human breast tissue. Physiological measurement. 1998;19(1):61. https://doi.org/10.1088/0967-3334/19/1/006 Jossinet J. The impedivity of freshly excised human breast tissue . Physiological measurement . 1998 ; 19 ( 1 ): 61 . https://doi.org/10.1088/0967-3334/19/1/006 Search in Google Scholar

Salem SB, Ali SZ, Leo AJ, Lachiri Z, Mkandawire M. Early breast cancer detection and differentiation tool based on tissue impedance characteristics and machine learning. Frontiers in Artificial Intelligence. 2023;6. https://doi.org/10.3389/frai.2023.1248977 Salem SB Ali SZ Leo AJ Lachiri Z Mkandawire M. Early breast cancer detection and differentiation tool based on tissue impedance characteristics and machine learning . Frontiers in Artificial Intelligence . 2023 ; 6 . https://doi.org/10.3389/frai.2023.1248977 Search in Google Scholar

Company-Se G, Nescolarde L, Pajares V, Torrego A, Riu PJ, Rosell J, et al. Minimally invasive lung tissue differentiation using electrical impedance spectroscopy: A comparison of the 3-and 4-electrode methods. IEEE access. 2021;10:7354-67. https://doi.org/10.1109/ACCESS.2021.3139223 Company-Se G Nescolarde L Pajares V Torrego A Riu PJ Rosell J et al. Minimally invasive lung tissue differentiation using electrical impedance spectroscopy: A comparison of the 3-and 4-electrode methods . IEEE access . 2021 ; 10 : 7354 67 . https://doi.org/10.1109/ACCESS.2021.3139223 Search in Google Scholar

Tsampazis N, Vavoulidis E, Siarkou CM, Siarkou GM, Pratilas GC, Symeonidou M, et al. Diagnostic comparison of electrical impedance spectroscopy with colposcopy and HPV mRNA-testing in the prediction of CIN2+ women in Greece. Journal of Obstetrics and Gynaecology Research. 2023;49(4):1222-9. https://doi.org/10.1111/jog.15557 Tsampazis N Vavoulidis E Siarkou CM Siarkou GM Pratilas GC Symeonidou M et al. Diagnostic comparison of electrical impedance spectroscopy with colposcopy and HPV mRNA-testing in the prediction of CIN2+ women in Greece . Journal of Obstetrics and Gynaecology Research . 2023 ; 49 ( 4 ): 1222 9 . https://doi.org/10.1111/jog.15557 Search in Google Scholar

Mansouri S, Alhadidi T, Ben Azouz M. Breast cancer detection using low-frequency bioimpedance device. Breast Cancer: Targets and Therapy. 2020:109-16. https://doi.org/10.2147/BCTT.S274421 Mansouri S Alhadidi T Ben Azouz M. Breast cancer detection using low-frequency bioimpedance device . Breast Cancer: Targets and Therapy . 2020 : 109 16 . https://doi.org/10.2147/BCTT.S274421 Search in Google Scholar

Hu S, Gao G, Hong Z, Liu C, Liu K, Yao J. An electrode array sensor for tongue cancer detection with bioelectrical impedance spectroscopic tomography. IEEE Sensors Journal. 2022;22(15):15146-53. https://doi.org/10.1109/JSEN.2022.3184342 Hu S Gao G Hong Z Liu C Liu K Yao J. An electrode array sensor for tongue cancer detection with bioelectrical impedance spectroscopic tomography . IEEE Sensors Journal . 2022 ; 22 ( 15 ): 15146 53 . https://doi.org/10.1109/JSEN.2022.3184342 Search in Google Scholar

Bertemes-Filho P. Electrical bioimpedance based estimation of diabetics. Advanced Bioscience and Biosystems for Detection and Management of Diabetes: Springer; 2022. p. 181-97. https://doi.org/10.1007/978-3-030-99728-1_9 Bertemes-Filho P. Electrical bioimpedance based estimation of diabetics . Advanced Bioscience and Biosystems for Detection and Management of Diabetes : Springer ; 2022 . p. 181 97 . https://doi.org/10.1007/978-3-030-99728-1_9 Search in Google Scholar

Anand G, Yu Y, Lowe A, Kalra A. Bioimpedance analysis as a tool for hemodynamic monitoring: overview, methods and challenges. Physiological measurement. 2021;42(3):03TR1. https://doi.org/10.1088/1361-6579/abe80e Anand G Yu Y Lowe A Kalra A. Bioimpedance analysis as a tool for hemodynamic monitoring: overview, methods and challenges . Physiological measurement . 2021 ; 42 ( 3 ): 03TR1 . https://doi.org/10.1088/1361-6579/abe80e Search in Google Scholar

Kim K, Jun M-H, Hong S, Kim S, Yu S, Kim JU. Effect of body posture on segmental multifrequency bioimpedance variables. Journal of Mechanics in Medicine and Biology. 2022;22(09):2240053. https://doi.org/10.1142/S021951942240053X Kim K Jun M-H Hong S Kim S Yu S Kim JU. Effect of body posture on segmental multifrequency bioimpedance variables . Journal of Mechanics in Medicine and Biology . 2022 ; 22 ( 09 ): 2240053 . https://doi.org/10.1142/S021951942240053X Search in Google Scholar

Zhang Z, Li X, Tian J, Chen J, Gao G. A review: Application and research progress of bioimpedance in meat quality inspection. Journal of Food Process Engineering. 2022;45(11):e14153. https://doi.org/10.1111/jfpe.14153 Zhang Z Li X Tian J Chen J Gao G. A review: Application and research progress of bioimpedance in meat quality inspection . Journal of Food Process Engineering . 2022 ; 45 ( 11 ): e14153 . https://doi.org/10.1111/jfpe.14153 Search in Google Scholar

Osen DE, Abie SM, Martinsen ØG, Egelandsdal B, Münch D. Bioimpedance-based authentication of defrosted versus fresh pork at the end of refrigerated shelf life. Journal of Electrical Bioimpedance. 2022;13(1):125-31. https://doi.org/10.2478/joeb-2022-0017 Osen DE Abie SM Martinsen ØG Egelandsdal B Münch D. Bioimpedance-based authentication of defrosted versus fresh pork at the end of refrigerated shelf life . Journal of Electrical Bioimpedance . 2022 ; 13 ( 1 ): 125 31 . https://doi.org/10.2478/joeb-2022-0017 Search in Google Scholar

Sun Z, Liang L, Li J, Liu X, Sun J, Zou X, et al. Rapid detection of Atlantic salmon multi-quality based on impedance properties. Food Science & Nutrition. 2020;8(2):862-9. https://doi.org/10.1002/fsn3.1362 Sun Z Liang L Li J Liu X Sun J Zou X et al. Rapid detection of Atlantic salmon multi-quality based on impedance properties . Food Science & Nutrition . 2020 ; 8 ( 2 ): 862 9 . https://doi.org/10.1002/fsn3.1362 Search in Google Scholar

Arteaga H, de Sousa Silva AC, de Campos Tambelli CE, Souto S, Costa EJX. Using pulsed magnetic fields to improve the quality of frozen blueberry: A bio-impedance approach. LWT. 2022;169:114039. https://doi.org/10.1016/j.lwt.2022.114039 Arteaga H de Sousa Silva AC de Campos Tambelli CE Souto S Costa EJX. Using pulsed magnetic fields to improve the quality of frozen blueberry: A bio-impedance approach . LWT . 2022 ; 169 : 114039 . https://doi.org/10.1016/j.lwt.2022.114039 Search in Google Scholar

Neto AF, Olivier NC, Cordeiro ER, de Oliveira HP. Determination of mango ripening degree by electrical impedance spectroscopy. Computers and Electronics in Agriculture. 2017;143:222-6. https://doi.org/10.1016/j.compag.2017.10.018 Neto AF Olivier NC Cordeiro ER de Oliveira HP. Determination of mango ripening degree by electrical impedance spectroscopy . Computers and Electronics in Agriculture . 2017 ; 143 : 222 6 . https://doi.org/10.1016/j.compag.2017.10.018 Search in Google Scholar

Soares C, Machado JT, Lopes AM, Vieira E, Delerue-Matos C. Electrochemical impedance spectroscopy characterization of beverages. Food chemistry. 2020;302:125345. https://doi.org/10.1016/j.foodchem.2019.125345 Soares C Machado JT Lopes AM Vieira E Delerue-Matos C. Electrochemical impedance spectroscopy characterization of beverages . Food chemistry . 2020 ; 302 : 125345 . https://doi.org/10.1016/j.foodchem.2019.125345 Search in Google Scholar

Cornish B, Thomas B, Ward L. Effect of temperature and sweating on bioimpedance measurements. Applied Radiation and Isotopes. 1998;49(5-6):475-6. https://doi.org/10.1016/S0969-8043(97)00057-2 Cornish B Thomas B Ward L. Effect of temperature and sweating on bioimpedance measurements . Applied Radiation and Isotopes . 1998 ; 49 ( 5-6 ): 475 6 . https://doi.org/10.1016/S0969-8043(97)00057-2 Search in Google Scholar

Gersing E. Monitoring Temperature-Induced Changes in Tissue during Hyperthermia by Impedance Methods. Annals of the New York Academy of Sciences. 1999;873(1):13-20. https://doi.org/10.1111/j.1749-6632.1999.tb09444.x Gersing E. Monitoring Temperature-Induced Changes in Tissue during Hyperthermia by Impedance Methods . Annals of the New York Academy of Sciences . 1999 ; 873 ( 1 ): 13 20 . https://doi.org/10.1111/j.1749-6632.1999.tb09444.x Search in Google Scholar

Islam N, Hale R, Taylor M, Wilson A. The possible use of combined electrical impedance and ultrasound velocity measurements for the non-invasive measurement of temperature during mild hyperthermia. Physiological Measurement. 2013;34(9):1103. https://doi.org/10.1088/0967-3334/34/9/1103 Islam N Hale R Taylor M Wilson A. The possible use of combined electrical impedance and ultrasound velocity measurements for the non-invasive measurement of temperature during mild hyperthermia . Physiological Measurement . 2013 ; 34 ( 9 ): 1103 . https://doi.org/10.1088/0967-3334/34/9/1103 Search in Google Scholar

Edd JF, Horowitz L, Rubinsky B. Temperature dependence of tissue impedivity in electrical impedance tomography of cryosurgery. IEEE transactions on biomedical engineering. 2005;52(4):695-701. https://doi.org/10.1109/TBME.2005.844042 Edd JF Horowitz L Rubinsky B. Temperature dependence of tissue impedivity in electrical impedance tomography of cryosurgery . IEEE transactions on biomedical engineering . 2005 ; 52 ( 4 ): 695 701 . https://doi.org/10.1109/TBME.2005.844042 Search in Google Scholar

Jaspard F, Nadi M. Dielectric properties of blood: an investigation of temperature dependence. Physiological measurement. 2002;23(3):547 https://doi.org/10.1088/0967-3334/23/3/306 Jaspard F Nadi M. Dielectric properties of blood: an investigation of temperature dependence . Physiological measurement . 2002 ; 23 ( 3 ): 547 https://doi.org/10.1088/0967-3334/23/3/306 Search in Google Scholar

Martinsen ØG, Grimnes S. The concept of transfer impedance in bioimpedance measurements. In 4th European Conference of the International Federation for Medical and Biological Engineering: IFMBE Proceedings, 2009; 22:1078-1079, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-89208-3_257 Martinsen ØG Grimnes S. The concept of transfer impedance in bioimpedance measurements . In 4th European Conference of the International Federation for Medical and Biological Engineering: IFMBE Proceedings , 2009 ; 22 : 1078 1079 , Springer Berlin Heidelberg . https://doi.org/10.1007/978-3-540-89208-3_257 Search in Google Scholar

Abie SM, Bergli J, Galperin Y, Martinsen ØG. Universality of AC conductance in human hair. Biomedical Physics & Engineering Express. 2016 Apr 7;2(2):027002. https://doi.org/10.1088/2057-1976/2/2/027002 Abie SM Bergli J Galperin Y Martinsen ØG. Universality of AC conductance in human hair . Biomedical Physics & Engineering Express . 2016 Apr 7 ; 2 ( 2 ): 027002 . https://doi.org/10.1088/2057-1976/2/2/027002 Search in Google Scholar

Buendia R, Gil-Pita R, Seoane F. Cole parameter estimation from the modulus of the electrical bioimpedance for assessment of body composition. A full spectroscopy approach. Journal of Electrical Bioimpedance. 2011;2(1):72-78. https://doi.org/10.5617/jeb.197 Buendia R Gil-Pita R Seoane F. Cole parameter estimation from the modulus of the electrical bioimpedance for assessment of body composition . A full spectroscopy approach. Journal of Electrical Bioimpedance . 2011 ; 2 ( 1 ): 72 78 . https://doi.org/10.5617/jeb.197 Search in Google Scholar

Freeborn TJ, Fu B. Fatigue-induced Cole electrical impedance model changes of biceps tissue bioimpedance. Fractal and Fractional. 2018;2(4):27. https://doi.org/10.3390/fractalfract2040027 Freeborn TJ Fu B. Fatigue-induced Cole electrical impedance model changes of biceps tissue bioimpedance . Fractal and Fractional . 2018 ; 2 ( 4 ): 27 . https://doi.org/10.3390/fractalfract2040027 Search in Google Scholar