This work is licensed under the Creative Commons Attribution 4.0 International License.
Martinsen OG, Heiskanen A. Bioimpedance and bioelectricity basics. 4th ed. Elsevier; 2023. https://doi.org/10.1016/B978-0-12-819107-1.00004-2MartinsenOGHeiskanenA.Bioimpedance and bioelectricity basics. 4th ed. Elsevier; 2023. https://doi.org/10.1016/B978-0-12-819107-1.00004-2Search in Google Scholar
Pethig R. Electrical properties of biological tissue. Modern Bioelectricity. CRC Press; 2020. p. 125-79.PethigR.Electrical properties of biological tissue. Modern Bioelectricity. CRC Pressy; 2020. p. 125–79.Search in Google Scholar
Foster KR, Schwan HP. Dielectric properties of tissues. CRC handbook of biological effects of electromagnetic fields. 2019:27-96.FosterKRSchwanHP.Dielectric properties of tissues. CRC handbook of biological effects of electromagnetic fields.2019:27–96.Search in Google Scholar
Gabriel C. Dielectric properties of biological materials. Bioengineering and Biophysical Aspects of Electromagnetic Fields. 3rd Ed. CRC Press, 2018:87-136. https://doi.org/10.1201/9781315221540-11GabrielC.Dielectric properties of biological materials. Bioengineering and Biophysical Aspects of Electromagnetic Fields. 3rd Ed. CRC Press, 2018:87–136. https://doi.org/10.1201/9781315221540-11Search in Google Scholar
Brown BH, Milnes P, Abdul S, Tidy JA. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study. BJOG: An International Journal of Obstetrics & Gynaecology. 2005;112(6):802-6. https://doi.org/10.1111/j.1471-0528.2004.00530.xBrownBHMilnesPAbdulSTidyJA.Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study. BJOG: An International Journal of Obstetrics & Gynaecology. 2005;112(6):802–6. https://doi.org/10.1111/j.1471-0528.2004.00530.xSearch in Google Scholar
Jossinet J. The impedivity of freshly excised human breast tissue. Physiological measurement. 1998;19(1):61. https://doi.org/10.1088/0967-3334/19/1/006JossinetJ.The impedivity of freshly excised human breast tissue. Physiological measurement. 1998;19(1):61. https://doi.org/10.1088/0967-3334/19/1/006Search in Google Scholar
Salem SB, Ali SZ, Leo AJ, Lachiri Z, Mkandawire M. Early breast cancer detection and differentiation tool based on tissue impedance characteristics and machine learning. Frontiers in Artificial Intelligence. 2023;6. https://doi.org/10.3389/frai.2023.1248977SalemSBAliSZLeoAJLachiriZMkandawireM.Early breast cancer detection and differentiation tool based on tissue impedance characteristics and machine learning. Frontiers in Artificial Intelligence. 2023;6. https://doi.org/10.3389/frai.2023.1248977Search in Google Scholar
Company-Se G, Nescolarde L, Pajares V, Torrego A, Riu PJ, Rosell J, et al. Minimally invasive lung tissue differentiation using electrical impedance spectroscopy: A comparison of the 3-and 4-electrode methods. IEEE access. 2021;10:7354-67. https://doi.org/10.1109/ACCESS.2021.3139223Company-SeGNescolardeLPajaresVTorregoARiuPJRosellJet al.Minimally invasive lung tissue differentiation using electrical impedance spectroscopy: A comparison of the 3-and 4-electrode methods. IEEE access. 2021;10:7354–67. https://doi.org/10.1109/ACCESS.2021.3139223Search in Google Scholar
Tsampazis N, Vavoulidis E, Siarkou CM, Siarkou GM, Pratilas GC, Symeonidou M, et al. Diagnostic comparison of electrical impedance spectroscopy with colposcopy and HPV mRNA-testing in the prediction of CIN2+ women in Greece. Journal of Obstetrics and Gynaecology Research. 2023;49(4):1222-9. https://doi.org/10.1111/jog.15557TsampazisNVavoulidisESiarkouCMSiarkouGMPratilasGCSymeonidouMet al.Diagnostic comparison of electrical impedance spectroscopy with colposcopy and HPV mRNA-testing in the prediction of CIN2+ women in Greece. Journal of Obstetrics and Gynaecology Research. 2023;49(4):1222–9. https://doi.org/10.1111/jog.15557Search in Google Scholar
Mansouri S, Alhadidi T, Ben Azouz M. Breast cancer detection using low-frequency bioimpedance device. Breast Cancer: Targets and Therapy. 2020:109-16. https://doi.org/10.2147/BCTT.S274421MansouriSAlhadidiTBen AzouzM.Breast cancer detection using low-frequency bioimpedance device. Breast Cancer: Targets and Therapy. 2020:109–16. https://doi.org/10.2147/BCTT.S274421Search in Google Scholar
Hu S, Gao G, Hong Z, Liu C, Liu K, Yao J. An electrode array sensor for tongue cancer detection with bioelectrical impedance spectroscopic tomography. IEEE Sensors Journal. 2022;22(15):15146-53. https://doi.org/10.1109/JSEN.2022.3184342HuSGaoGHongZLiuCLiuKYaoJ.An electrode array sensor for tongue cancer detection with bioelectrical impedance spectroscopic tomography. IEEE Sensors Journal. 2022;22(15):15146–53. https://doi.org/10.1109/JSEN.2022.3184342Search in Google Scholar
Bertemes-Filho P. Electrical bioimpedance based estimation of diabetics. Advanced Bioscience and Biosystems for Detection and Management of Diabetes: Springer; 2022. p. 181-97. https://doi.org/10.1007/978-3-030-99728-1_9Bertemes-FilhoP.Electrical bioimpedance based estimation of diabetics. Advanced Bioscience and Biosystems for Detection and Management of Diabetes: Springer; 2022. p. 181–97. https://doi.org/10.1007/978-3-030-99728-1_9Search in Google Scholar
Anand G, Yu Y, Lowe A, Kalra A. Bioimpedance analysis as a tool for hemodynamic monitoring: overview, methods and challenges. Physiological measurement. 2021;42(3):03TR1. https://doi.org/10.1088/1361-6579/abe80eAnandGYuYLoweAKalraA.Bioimpedance analysis as a tool for hemodynamic monitoring: overview, methods and challenges. Physiological measurement. 2021;42(3):03TR1. https://doi.org/10.1088/1361-6579/abe80eSearch in Google Scholar
Kim K, Jun M-H, Hong S, Kim S, Yu S, Kim JU. Effect of body posture on segmental multifrequency bioimpedance variables. Journal of Mechanics in Medicine and Biology. 2022;22(09):2240053. https://doi.org/10.1142/S021951942240053XKimKJunM-HHongSKimSYuSKimJU.Effect of body posture on segmental multifrequency bioimpedance variables. Journal of Mechanics in Medicine and Biology. 2022;22(09):2240053. https://doi.org/10.1142/S021951942240053XSearch in Google Scholar
Zhang Z, Li X, Tian J, Chen J, Gao G. A review: Application and research progress of bioimpedance in meat quality inspection. Journal of Food Process Engineering. 2022;45(11):e14153. https://doi.org/10.1111/jfpe.14153ZhangZLiXTianJChenJGaoG.A review: Application and research progress of bioimpedance in meat quality inspection. Journal of Food Process Engineering. 2022;45(11):e14153. https://doi.org/10.1111/jfpe.14153Search in Google Scholar
Osen DE, Abie SM, Martinsen ØG, Egelandsdal B, Münch D. Bioimpedance-based authentication of defrosted versus fresh pork at the end of refrigerated shelf life. Journal of Electrical Bioimpedance. 2022;13(1):125-31. https://doi.org/10.2478/joeb-2022-0017OsenDEAbieSMMartinsenØGEgelandsdalBMünchD.Bioimpedance-based authentication of defrosted versus fresh pork at the end of refrigerated shelf life. Journal of Electrical Bioimpedance. 2022;13(1):125–31. https://doi.org/10.2478/joeb-2022-0017Search in Google Scholar
Sun Z, Liang L, Li J, Liu X, Sun J, Zou X, et al. Rapid detection of Atlantic salmon multi-quality based on impedance properties. Food Science & Nutrition. 2020;8(2):862-9. https://doi.org/10.1002/fsn3.1362SunZLiangLLiJLiuXSunJZouXet al.Rapid detection of Atlantic salmon multi-quality based on impedance properties. Food Science & Nutrition. 2020;8(2):862–9. https://doi.org/10.1002/fsn3.1362Search in Google Scholar
Arteaga H, de Sousa Silva AC, de Campos Tambelli CE, Souto S, Costa EJX. Using pulsed magnetic fields to improve the quality of frozen blueberry: A bio-impedance approach. LWT. 2022;169:114039. https://doi.org/10.1016/j.lwt.2022.114039ArteagaHde Sousa SilvaACde Campos TambelliCESoutoSCostaEJX.Using pulsed magnetic fields to improve the quality of frozen blueberry: A bio-impedance approach. LWT. 2022;169:114039. https://doi.org/10.1016/j.lwt.2022.114039Search in Google Scholar
Neto AF, Olivier NC, Cordeiro ER, de Oliveira HP. Determination of mango ripening degree by electrical impedance spectroscopy. Computers and Electronics in Agriculture. 2017;143:222-6. https://doi.org/10.1016/j.compag.2017.10.018NetoAFOlivierNCCordeiroERde OliveiraHP.Determination of mango ripening degree by electrical impedance spectroscopy. Computers and Electronics in Agriculture. 2017;143:222–6. https://doi.org/10.1016/j.compag.2017.10.018Search in Google Scholar
Soares C, Machado JT, Lopes AM, Vieira E, Delerue-Matos C. Electrochemical impedance spectroscopy characterization of beverages. Food chemistry. 2020;302:125345. https://doi.org/10.1016/j.foodchem.2019.125345SoaresCMachadoJTLopesAMVieiraEDelerue-MatosC.Electrochemical impedance spectroscopy characterization of beverages. Food chemistry. 2020;302:125345. https://doi.org/10.1016/j.foodchem.2019.125345Search in Google Scholar
Cornish B, Thomas B, Ward L. Effect of temperature and sweating on bioimpedance measurements. Applied Radiation and Isotopes. 1998;49(5-6):475-6. https://doi.org/10.1016/S0969-8043(97)00057-2CornishBThomasBWardL.Effect of temperature and sweating on bioimpedance measurements. Applied Radiation and Isotopes. 1998;49(5-6):475–6. https://doi.org/10.1016/S0969-8043(97)00057-2Search in Google Scholar
Gersing E. Monitoring Temperature-Induced Changes in Tissue during Hyperthermia by Impedance Methods. Annals of the New York Academy of Sciences. 1999;873(1):13-20. https://doi.org/10.1111/j.1749-6632.1999.tb09444.xGersingE.Monitoring Temperature-Induced Changes in Tissue during Hyperthermia by Impedance Methods. Annals of the New York Academy of Sciences. 1999;873(1):13–20. https://doi.org/10.1111/j.1749-6632.1999.tb09444.xSearch in Google Scholar
Islam N, Hale R, Taylor M, Wilson A. The possible use of combined electrical impedance and ultrasound velocity measurements for the non-invasive measurement of temperature during mild hyperthermia. Physiological Measurement. 2013;34(9):1103. https://doi.org/10.1088/0967-3334/34/9/1103IslamNHaleRTaylorMWilsonA.The possible use of combined electrical impedance and ultrasound velocity measurements for the non-invasive measurement of temperature during mild hyperthermia. Physiological Measurement. 2013;34(9):1103. https://doi.org/10.1088/0967-3334/34/9/1103Search in Google Scholar
Edd JF, Horowitz L, Rubinsky B. Temperature dependence of tissue impedivity in electrical impedance tomography of cryosurgery. IEEE transactions on biomedical engineering. 2005;52(4):695-701. https://doi.org/10.1109/TBME.2005.844042EddJFHorowitzLRubinskyB.Temperature dependence of tissue impedivity in electrical impedance tomography of cryosurgery. IEEE transactions on biomedical engineering. 2005;52(4):695–701. https://doi.org/10.1109/TBME.2005.844042Search in Google Scholar
Jaspard F, Nadi M. Dielectric properties of blood: an investigation of temperature dependence. Physiological measurement. 2002;23(3):547 https://doi.org/10.1088/0967-3334/23/3/306JaspardFNadiM.Dielectric properties of blood: an investigation of temperature dependence. Physiological measurement. 2002;23(3):547https://doi.org/10.1088/0967-3334/23/3/306Search in Google Scholar
Martinsen ØG, Grimnes S. The concept of transfer impedance in bioimpedance measurements. In 4th European Conference of the International Federation for Medical and Biological Engineering: IFMBE Proceedings, 2009; 22:1078-1079, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-89208-3_257MartinsenØGGrimnesS.The concept of transfer impedance in bioimpedance measurements. In 4th European Conference of the International Federation for Medical and Biological Engineering: IFMBE Proceedings, 2009; 22:1078–1079, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-89208-3_257Search in Google Scholar
Abie SM, Bergli J, Galperin Y, Martinsen ØG. Universality of AC conductance in human hair. Biomedical Physics & Engineering Express. 2016 Apr 7;2(2):027002. https://doi.org/10.1088/2057-1976/2/2/027002AbieSMBergliJGalperinYMartinsenØG.Universality of AC conductance in human hair. Biomedical Physics & Engineering Express. 2016Apr7;2(2):027002. https://doi.org/10.1088/2057-1976/2/2/027002Search in Google Scholar
Buendia R, Gil-Pita R, Seoane F. Cole parameter estimation from the modulus of the electrical bioimpedance for assessment of body composition. A full spectroscopy approach. Journal of Electrical Bioimpedance. 2011;2(1):72-78. https://doi.org/10.5617/jeb.197BuendiaRGil-PitaRSeoaneF.Cole parameter estimation from the modulus of the electrical bioimpedance for assessment of body composition. A full spectroscopy approach. Journal of Electrical Bioimpedance. 2011;2(1):72–78. https://doi.org/10.5617/jeb.197Search in Google Scholar
Freeborn TJ, Fu B. Fatigue-induced Cole electrical impedance model changes of biceps tissue bioimpedance. Fractal and Fractional. 2018;2(4):27. https://doi.org/10.3390/fractalfract2040027FreebornTJFuB.Fatigue-induced Cole electrical impedance model changes of biceps tissue bioimpedance. Fractal and Fractional. 2018;2(4):27. https://doi.org/10.3390/fractalfract2040027Search in Google Scholar