[
Abuelgasim, A., & Ammad, R. (2019). Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sensing Applications: Society and Environment, 13, 415–425. https://doi.org/10.1016/j.rsase.2018.12.010.
]Search in Google Scholar
[
Ankana (2016). Land and Forest Management by Land Use/ Land Cover Analysis and Change Detection Using Remote Sensing and GIS. Journal of Landscape Ecology, Sciendo, vol. 9 no. 1, pp. 63-77. https://doi.org/10.1515/jlecol-2016-0005.
]Search in Google Scholar
[
Shahrayini, E., Noroozi, A.A. (2022). Modeling and Mapping of Soil Salinity and Alkalinity Using Remote Sensing Data and Topographic Factors: A Case Study in Iran. Environ Model Assess 27, 901–913. https://doi.org/10.1007/s10666-022-09823-8.
]Search in Google Scholar
[
Bandak, S., Movahedi-Naeini, S. A., Mehri, S., & Lotfata, A. (2024). A longitudinal analysis of soil salinity changes using remotely sensed imageries. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-60033-6.
]Search in Google Scholar
[
Chen, H., Wu, J., & Xu, C. (2024). Monitoring Soil Salinity Classes through Remote Sensing-Based Ensemble Learning Concept: Considering Scale Effects. Remote Sensing, 16(4). https://doi.org/10.3390/rs16040642.
]Search in Google Scholar
[
Douaoui, A. E. K., Nicolas, H., & Walter, C. (2006). Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134(1–2), 217–230. https://doi.org/10.1016/j.geoderma.2005.10.009.
]Search in Google Scholar
[
FAO, (2020). Technical manual of mapping of salt-affected soil, Food and agriculture Organization of United Nations. Retrieved December 12, 2020, from https://openknowledge.fao.org/server/api/core/bitstreams/bc479e71-76c1-4783-ab8e-06acf7fc6c8f/content.
]Search in Google Scholar
[
Fathizad, H., Ali Hakimzadeh Ardakani, M., Sodaiezadeh, H., Kerry, R., & Taghizadeh-Mehrjardi, R. (2020). Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Geoderma, 365. https://doi.org/10.1016/j.geoderma.2020.114233.
]Search in Google Scholar
[
Gad, M. M. E. S., Mohamed, M. H. A., & Mohamed, M. R. (2022). Soil salinity mapping using remote sensing and GIS. Geomatica, 75(4), 295–309. https://doi.org/10.1139/geomat-2021-0015.
]Search in Google Scholar
[
Ghasempour, R., Aalami, M. T., Saghebian, S. M., & Kirca, V. S. O. (2024). Analysis of spatiotemporal variations of drought and soil salinity via integrated multiscale and remote sensing-based techniques (Case study: Urmia Lake basin). Ecological Informatics, 81.https://doi.org/10.1016/j.ecoinf.2024.102560.
]Search in Google Scholar
[
Gojiya, K. M., Rank, H. D., Chauhan, P. M., Patel, D. V., Satasiya, R. M., & Prajapati, G. V. (2023). Remote Sensing and GIS Applications in Soil Salinity Analysis: A Comprehensive Review. International Journal of Environment and Climate Change, 13(11), 2149–2161. https://doi.org/10.9734/ijecc/2023/v13i113377.
]Search in Google Scholar
[
Hihi, S., Rabah, Z. Ben, Bouaziz, M., Chtourou, M. Y., & Bouaziz, S. (2019). Prediction of Soil Salinity Using Remote Sensing Tools and Linear Regression Model. Advances in Remote Sensing, 08(03), 77–88. https://doi.org/10.4236/ars.2019.83005.
]Search in Google Scholar
[
IS 14767: 2000. (2000). Determination of the Specific Electrical Conductivity of Soils-Method of Test, Bureau of Indian Standards. Retrieved January 18, 2000, from https://law.resource.org/pub/in/bis/S06/is.14767.2000.pdf.
]Search in Google Scholar
[
Khan, N. M., Rastoskuev, V. V, Shalina, E. V, & Sato, Y. (2001). Mapping Salt-affected Soils Using Remote Sensing Indicators-A Simple Approach with the Use of GIS IDRISI. Retrieved June 12, 2002, from https://acrs-aars.org/proceeding/ACRS2001/Papers/AGS-05.pdf.
]Search in Google Scholar
[
Khan, S., A. A. (2007). Using Remote Sensing Techniques for Appraisal of Irrigated Soil Salinity. International Congress on Modelling and Simulation, 2632–2638. Retrieved March 2, 2020, from https://www.researchgate.net/publication/237421639.
]Search in Google Scholar
[
Kumar, P., & Sharma, P. K. (2020). Soil Salinity and Food Security in India. In Frontiers in Sustainable Food Systems (Vol. 4) (pp. 1 - 10). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2020.533781.
]Search in Google Scholar
[
Mandal, A. K. (2022). The need for the spectral characterization of dominant salts and recommended methods of soil sampling and analysis for the proper spectral evaluation of salt affected soils using hyper -spectral remote sensing. Remote Sensing Letters, 13(6), 588–598. https://doi.org/10.1080/2150704X.2022.2059414.
]Search in Google Scholar
[
Mandal, U. K., Nayak, D. B., Ghosh, A., Bhardwaj, A. K., Lama, T. D., Mahajan, G. R., Das, B., Nagaraja, M. S., Kuligod, V. B., Rani, P. P., Mal, S., Samui, A., Mahanta, K. K., Mandal, S., Raut, S., & Burman, D. (2023). Delineation of saline soils in coastal India using satellite remote sensing. Current Science, 125(12), 1339–1353. https://doi.org/10.18520/cs/v125/i12/1339-1353.
]Search in Google Scholar
[
Mohammadifar, A., Gholami, H., & Golzari, S. (2022). Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using Deep Quantreg and game theory. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-19357-4.
]Search in Google Scholar
[
Rani, A., Kumar, N., Sinha, N. K., & Kumar, J. (2022). Identification of salt-affected soils using remote sensing data through random forest technique: a case study from India. Arabian Journal of Geosciences, 15(5). https://doi.org/10.1007/s12517-022-09682-3.
]Search in Google Scholar
[
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. In Science of the Total Environment (Vol. 764) (pp. 1 - 10). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.144164.
]Search in Google Scholar
[
Scudiero, E., Skaggs, T. H., & Corwin, D. L. (2014). Regional scale soil salinity evaluation using Landsat 7, Western San Joaquin Valley, California, USA. Geoderma Regional, 2–3(C), 82–90. https://doi.org/10.1016/j.geodrs.2014.10.004.
]Search in Google Scholar
[
Singh, S., Jahan, I., Sharma, A., & Misra, V. K. (2017). Inland Saline Aquaculture-A Hope for Farmers. International Journal of Global Science Research, 4(2). https://doi.org/10.26540/ijgsr.v4.i2.2017.80.
]Search in Google Scholar
[
Somvanshi, Shivangi S., et al. (2020). “Unveiling Spatial Variation in Salt Affected Soil of Gautam Buddha Nagar District Based on Remote Sensing Indicators” Journal of Landscape Ecology, vol. 13, no. 1, Sciendo,, pp. 61-84. https://doi.org/10.2478/jlecol-2020-0005.
]Search in Google Scholar
[
Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., Ge, X., Zhang, Z., Wang, Y., Yang, X., Shi, T., & Su, F. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of the Total Environment, 707. https://doi.org/10.1016/j.scitotenv.2019.136092.
]Search in Google Scholar
[
Zhang, Z., Fan, Y., Jiao, Z., Wang, X., & Wu, Q. (2022). Baseline-Based Soil Salinity Index (BSSI): A New Soil Salinity Index for Monitoring Soil Salinization. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp 7791–7794), 2022-July. https://doi.org/10.1109/IGARSS46834.2022.9883453
]Search in Google Scholar