Uneingeschränkter Zugang

Development of Novel Soil Salinity Spectral Index Using Remotely Sensed Data: A Case Study on Balod District, Chhattisgarh, India

,  und   
28. März 2025

Zitieren
COVER HERUNTERLADEN

Abuelgasim, A., & Ammad, R. (2019). Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sensing Applications: Society and Environment, 13, 415–425. https://doi.org/10.1016/j.rsase.2018.12.010. Search in Google Scholar

Ankana (2016). Land and Forest Management by Land Use/ Land Cover Analysis and Change Detection Using Remote Sensing and GIS. Journal of Landscape Ecology, Sciendo, vol. 9 no. 1, pp. 63-77. https://doi.org/10.1515/jlecol-2016-0005. Search in Google Scholar

Shahrayini, E., Noroozi, A.A. (2022). Modeling and Mapping of Soil Salinity and Alkalinity Using Remote Sensing Data and Topographic Factors: A Case Study in Iran. Environ Model Assess 27, 901–913. https://doi.org/10.1007/s10666-022-09823-8. Search in Google Scholar

Bandak, S., Movahedi-Naeini, S. A., Mehri, S., & Lotfata, A. (2024). A longitudinal analysis of soil salinity changes using remotely sensed imageries. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-60033-6. Search in Google Scholar

Chen, H., Wu, J., & Xu, C. (2024). Monitoring Soil Salinity Classes through Remote Sensing-Based Ensemble Learning Concept: Considering Scale Effects. Remote Sensing, 16(4). https://doi.org/10.3390/rs16040642. Search in Google Scholar

Douaoui, A. E. K., Nicolas, H., & Walter, C. (2006). Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134(1–2), 217–230. https://doi.org/10.1016/j.geoderma.2005.10.009. Search in Google Scholar

FAO, (2020). Technical manual of mapping of salt-affected soil, Food and agriculture Organization of United Nations. Retrieved December 12, 2020, from https://openknowledge.fao.org/server/api/core/bitstreams/bc479e71-76c1-4783-ab8e-06acf7fc6c8f/content. Search in Google Scholar

Fathizad, H., Ali Hakimzadeh Ardakani, M., Sodaiezadeh, H., Kerry, R., & Taghizadeh-Mehrjardi, R. (2020). Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Geoderma, 365. https://doi.org/10.1016/j.geoderma.2020.114233. Search in Google Scholar

Gad, M. M. E. S., Mohamed, M. H. A., & Mohamed, M. R. (2022). Soil salinity mapping using remote sensing and GIS. Geomatica, 75(4), 295–309. https://doi.org/10.1139/geomat-2021-0015. Search in Google Scholar

Ghasempour, R., Aalami, M. T., Saghebian, S. M., & Kirca, V. S. O. (2024). Analysis of spatiotemporal variations of drought and soil salinity via integrated multiscale and remote sensing-based techniques (Case study: Urmia Lake basin). Ecological Informatics, 81.https://doi.org/10.1016/j.ecoinf.2024.102560. Search in Google Scholar

Gojiya, K. M., Rank, H. D., Chauhan, P. M., Patel, D. V., Satasiya, R. M., & Prajapati, G. V. (2023). Remote Sensing and GIS Applications in Soil Salinity Analysis: A Comprehensive Review. International Journal of Environment and Climate Change, 13(11), 2149–2161. https://doi.org/10.9734/ijecc/2023/v13i113377. Search in Google Scholar

Hihi, S., Rabah, Z. Ben, Bouaziz, M., Chtourou, M. Y., & Bouaziz, S. (2019). Prediction of Soil Salinity Using Remote Sensing Tools and Linear Regression Model. Advances in Remote Sensing, 08(03), 77–88. https://doi.org/10.4236/ars.2019.83005. Search in Google Scholar

IS 14767: 2000. (2000). Determination of the Specific Electrical Conductivity of Soils-Method of Test, Bureau of Indian Standards. Retrieved January 18, 2000, from https://law.resource.org/pub/in/bis/S06/is.14767.2000.pdf. Search in Google Scholar

Khan, N. M., Rastoskuev, V. V, Shalina, E. V, & Sato, Y. (2001). Mapping Salt-affected Soils Using Remote Sensing Indicators-A Simple Approach with the Use of GIS IDRISI. Retrieved June 12, 2002, from https://acrs-aars.org/proceeding/ACRS2001/Papers/AGS-05.pdf. Search in Google Scholar

Khan, S., A. A. (2007). Using Remote Sensing Techniques for Appraisal of Irrigated Soil Salinity. International Congress on Modelling and Simulation, 2632–2638. Retrieved March 2, 2020, from https://www.researchgate.net/publication/237421639. Search in Google Scholar

Kumar, P., & Sharma, P. K. (2020). Soil Salinity and Food Security in India. In Frontiers in Sustainable Food Systems (Vol. 4) (pp. 1 - 10). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2020.533781. Search in Google Scholar

Mandal, A. K. (2022). The need for the spectral characterization of dominant salts and recommended methods of soil sampling and analysis for the proper spectral evaluation of salt affected soils using hyper -spectral remote sensing. Remote Sensing Letters, 13(6), 588–598. https://doi.org/10.1080/2150704X.2022.2059414. Search in Google Scholar

Mandal, U. K., Nayak, D. B., Ghosh, A., Bhardwaj, A. K., Lama, T. D., Mahajan, G. R., Das, B., Nagaraja, M. S., Kuligod, V. B., Rani, P. P., Mal, S., Samui, A., Mahanta, K. K., Mandal, S., Raut, S., & Burman, D. (2023). Delineation of saline soils in coastal India using satellite remote sensing. Current Science, 125(12), 1339–1353. https://doi.org/10.18520/cs/v125/i12/1339-1353. Search in Google Scholar

Mohammadifar, A., Gholami, H., & Golzari, S. (2022). Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using Deep Quantreg and game theory. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-19357-4. Search in Google Scholar

Rani, A., Kumar, N., Sinha, N. K., & Kumar, J. (2022). Identification of salt-affected soils using remote sensing data through random forest technique: a case study from India. Arabian Journal of Geosciences, 15(5). https://doi.org/10.1007/s12517-022-09682-3. Search in Google Scholar

Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. In Science of the Total Environment (Vol. 764) (pp. 1 - 10). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.144164. Search in Google Scholar

Scudiero, E., Skaggs, T. H., & Corwin, D. L. (2014). Regional scale soil salinity evaluation using Landsat 7, Western San Joaquin Valley, California, USA. Geoderma Regional, 2–3(C), 82–90. https://doi.org/10.1016/j.geodrs.2014.10.004. Search in Google Scholar

Singh, S., Jahan, I., Sharma, A., & Misra, V. K. (2017). Inland Saline Aquaculture-A Hope for Farmers. International Journal of Global Science Research, 4(2). https://doi.org/10.26540/ijgsr.v4.i2.2017.80. Search in Google Scholar

Somvanshi, Shivangi S., et al. (2020). “Unveiling Spatial Variation in Salt Affected Soil of Gautam Buddha Nagar District Based on Remote Sensing Indicators” Journal of Landscape Ecology, vol. 13, no. 1, Sciendo,, pp. 61-84. https://doi.org/10.2478/jlecol-2020-0005. Search in Google Scholar

Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., Ge, X., Zhang, Z., Wang, Y., Yang, X., Shi, T., & Su, F. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of the Total Environment, 707. https://doi.org/10.1016/j.scitotenv.2019.136092. Search in Google Scholar

Zhang, Z., Fan, Y., Jiao, Z., Wang, X., & Wu, Q. (2022). Baseline-Based Soil Salinity Index (BSSI): A New Soil Salinity Index for Monitoring Soil Salinization. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp 7791–7794), 2022-July. https://doi.org/10.1109/IGARSS46834.2022.9883453 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, Geowissenschaften, andere, Biologie, Ökologie