Zacytuj

[1] C. Talamonti, K. Kanxheri, S. Pallotta, and L. Servoli, “Diamond Detectors for Radiotherapy X-Ray Small Beam Dosimetry”, Frontiers Physics, pp. 632299, 2021. https://doi.org/10.3389/fphy.2021.632299. Search in Google Scholar

[2] J. A. Davis, K. Ganesan, D. A. Prokopovich, M. Petasecca, M. L. F. Lerch, D. N. Jamieson, and A. B. Rosenfeld, “A 3D lateral electrode structure for diamond based microdosimetry”, Applied Physics Letters, pp. 013503, 2017. https://doi.org/10.1063/1.4973628. Search in Google Scholar

[3] C. D. Venanzio, M. Marinelli, E. Milani, G. Prestopino, C. Verona, G. Verona-Rinati, M. D. Falco, P. Bagal, R. San-toni, and M. Pimpinella, “Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry: Synthetic diamond for radiotherapy electron beam dosimetry”, Medical Physics, pp. 021712, 2013. https://doi.org/10.1118/1.4774360.23387735 Search in Google Scholar

[4] F. Marsolat, D. Tromson, N. Tranchant, M. Pomorski, C. Bassinet, C. Huet, S. Derreumaux, M. Chea, K. Cristina, G. Boisserie, I. Buchheit, V. Marchesi, S. Gaudaire-Josset, A. Lisbona, D. Lazaro, R. Hugon, and P. Bergonzo, “Why diamond dimensions and electrode geometry are crucial for small photon beam dosimetry”, Journal of Applied Physics, pp. 234507, 2015. https://doi.org/10.1063/1.4937994. Search in Google Scholar

[5] T. Izak, O. Babchenko, M. Varga, S. Potocky, and A. Kromka, “Low temperature diamond growth by linear antenna plasma CVD over large area: Diamond growth by linear antenna plasma CVD”, Physica Status Solidi B, pp. 2600–2603, 2012. https://doi.org/10.1002/pssb.201200103. Search in Google Scholar

[6] M. Füner, C. Wild, and P. Koidl, “Novel microwave plasma reactor for diamond synthesis”, Applied Physics Letters, pp. 1149–1151, 1998. https://doi.org/10.1063/1.120997. Search in Google Scholar

[7] S. Tulić, T. Waitz, M.Čaplovičová, G. Habler, V. Vretenár, T. Susi, and V. Skákalová, “Catalytic graphitization of single-crystal diamond”, Carbon, pp. 300–313, 2021. https://doi.org/10.1016/j.carbon.2021.08.082. Search in Google Scholar

[8] J. M. García, R. He, M. P. Jiang, P. Kim, L. N. Pfeiffer, and A. Pinczuk, “Multilayer graphene grown by precipitation upon cooling of nickel on diamond”, Carbon, pp. 1006–1012, 2011. https://doi.org/10.1016/j.carbon.2010.11.008. Search in Google Scholar

[9] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growth of large-area graphene films from metal-carbon melts”, Journal of Applied Physics, pp. 094321, 2010. https://doi.org/10.1063/1.3498815. Search in Google Scholar

[10] S. Kanada, M. Nagai, S. Ito, T. Matsumoto, M. Ogura, D. Takeuchi, S. Yamasaki, T. Inokuma, and N. Tokuda, “Fabrication of graphene on atomically flat diamond (111) surfaces using nickel as a catalyst”, Diamond and Related Materials, pp. 105–109, 2017. https://doi.org/10.1016/j.diamond.2017.02.014. Search in Google Scholar

[11] S. Tulić, T. Waitz, O. Romanyuk, M. Varga, M.Čaplovičová, G. Habler, V. Vretenár, M. Kotlár, A. Kromka, B. Rezek, and V. Skákalová, “Ni-mediated reactions in nanocrystalline diamond on Si substrates: the role of the oxide barrier”, RSC Advances, pp. 8224–8232, 2020. https://doi.org/10.1039/D0RA00809E.904989135497871 Search in Google Scholar

[12] K. Koyama, S.-W. Kim, and M. Yoshimoto, “Influence of diamond-etching conditions on the fabrication of diamond microneedles by a thermochemical reaction of Ni in an H2 atmosphere”, Journal of the Ceramic Society of Japan, pp. 481–484, 2021. https://doi.org/10.2109/jcersj2.21025. Search in Google Scholar

[13] O. Romanyuk, M. Varga, S. Tulic, T. Izak, P. Jiricek, A. Kromka, V. Skakalova, and B. Rezek, “Study of Ni-Catalyzed Graphitization Process of Diamond by in Situ X-ray Photo-electron Spectroscopy”, The Journal of Physical Chemistry C, pp. 6629–6636, 2018. https://doi.org/10.1021/acs.jpcc.7b12334.615261230263086 Search in Google Scholar

[14] H. Kuzmany, R. Pfei er, N. Salk, and B. Günther, “The mystery of the 1140 cm1 Raman line in nanocrystalline diamond films”, Carbon, pp. 911–917, 2004. https://doi.org/10.1016/j.carbon.2003.12.045. Search in Google Scholar

[15] M. Domonkos, T. Ižák, M. Varga, Š. Potocký, P. Demo, and A. Kromka, “Diamond nucleation and growth on horizontally and vertically aligned Si substrates at low pressure in a linear antenna microwave plasma system”, Diamond and Related Materials, pp. 41–49, 2018. https://doi.org/10.1016/j.diamond.2017.12.018. Search in Google Scholar

[16] F. Klauser, D. Steinmüller-Nethl, R. Kaindl, E. Bertel, N. Memmel, and Raman, “Studies of Nano- and Ultra-nanocrystalline Diamond Films Grown by Hot-Filament CVD”, Chemical Vapor Deposition, pp. 127–135, 2010. https://doi.org/10.1002/cvde.200906827. Search in Google Scholar

[17] S. Prawer and R. J. Nemanich, “Raman spectroscopy of diamond and doped diamond”, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, pp. 2537–2565, 2004. https://doi.org/10.1098/rsta.2004.1451.15482990 Search in Google Scholar

[18] A. C. Ferrari and J. Robertson, “Origin of the 1150/cm Raman mode in nanocrystalline diamond”, Physical Review B, pp. 121405, 2001. https://doi.org/10.1103/PhysRevB.63.121405. Search in Google Scholar

[19] A. Kriele, O. A. Williams, M. Wolfer, J. J. Hees, W. Smirnov, and C. E. Nebel, “Formation of nano-pores in nano-crystalline diamond films”, Chemical Physics Letters, pp. 253–259, 2011. https://doi.org/10.1016/j.cplett.2011.03.089. Search in Google Scholar

[20] K. W. Sun, J. Y. Wang, and T. Y. Ko, “Raman spectroscopy of single nanodiamond: Phonon-confinement effects”, Applied Physics Letters, pp. 153115, 2008. https://doi.org/10.1063/1.2912029. Search in Google Scholar

eISSN:
1339-309X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other