Otwarty dostęp

A design methodology for programmable-gain low-noise TIA in CMOS


Zacytuj

[1] D. Abd-elrahman, M. Atef, and G. Wang, “10 Gb/s 1.95 mW active cascode transimpedance amplifier for high speed optical receivers, in”, 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), 2016, pp. 1-4.10.1109/MWSCAS.2016.7870132 Search in Google Scholar

[2] J. Shi, N. Qi, Q. Yang, H. Guo, G. Yan, and J. Du, “A low-cost system-on-chip for optical time domain reflectometer (OTDR), in”, 2016 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, 2016, pp. 1-4.10.1109/IEEE-IWS.2016.7585445 Search in Google Scholar

[3] M. Atef and H. Zimmermann, “Low-power 10 Gb/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40 nm CMOS,”, Analog Integr Circ Sig Process, 2013.10.1007/s10470-013-0117-8 Search in Google Scholar

[4] J. H. Yeom, K. Park, J. Choi, M. Song, and S. Y. Kim, “Low-cost and high-integration optical time domain reflectometer using CMOS technology, in”, 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), July 2019, pp. 145-148.10.1109/PRIME.2019.8787845 Search in Google Scholar

[5] M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,”, Journal of Lightwave Technology, vol. 7, no. 8, pp. 1217-1224, 1989. Search in Google Scholar

[6] J. Charlamov and R. Navickas, “Design of CMOS Differential Transimpedance Amplifier,”, Elektronika ir Elektrotechnika, vol. 21, no. 1, pp. 38-41, 2015. [Online]. http://eejournal.ktu.lt/index.php/elt/article/view/4548.10.5755/j01.eee.21.1.4548 Search in Google Scholar

[7] E. Sackinger, Analysis and Design of Transimpedance Amplifiers for Optical Receivers, Wiley, 2017.10.1002/9781119264422 Search in Google Scholar

[8] A. Romanova and V. Barzdenas, “A Review of Modern CMOS Transimpedance Amplifiers for OTDR Applications,”, Electronics, vol. 8, no. 10, p. 1073, Sep 2019. [Online]. http://dx.doi.org/10.3390/electronics8101073.10.3390/electronics8101073 Search in Google Scholar

[9] H. Escid, S. Salhi, and A. Slimane, “Bandwidth enhancement for 0.18 um CMOS transimpedance amplifier circuit, in”, 2013 25th International Conference on Microelectronics (ICM), Dec 2013, pp. 1-4.10.1109/ICM.2013.6734945 Search in Google Scholar

[10] M. Kossel, C. Menolfi, T. Morf, M. Schmatz, and T. Toifl, “Wideband CMOS transimpedance amplifier”, Electronics Letters, vol. 39, no. 7, 2003.10.1049/el:20030398 Search in Google Scholar

[11] R. q. Liu, Z. p. Wang, J. Tian, and Z. Meng, “A 57dBOmega 1GHz CMOS Front-End Preamplifier for Optical Receivers, in”, 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing, Sept 2012, pp. 1-4.10.1109/WiCOM.2012.6478264 Search in Google Scholar

[12] L. Han, M. Yu, and L. Zong, “Bandwidth ehancement for transimpedance ampilfier in CMOS process”, 2010 3rd International Conference on Biomedical Engineering and Informatics, vol. 7, 2010, pp. 2839-2842.10.1109/BMEI.2010.5639311 Search in Google Scholar

[13] G. Royo, C. Sanchez-Azqueta, C. Aldea, S. Celma, and C. Gimeno, “CMOS transimpedance amplifier with controllable gain for RF overlay”, 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2016, pp. 1-4.10.1109/PRIME.2016.7519513 Search in Google Scholar

[14] S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,”, IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 346-355, March 2000.10.1109/4.826816 Search in Google Scholar

[15] J. D. Jin and S. S. H. Hsu, “40-Gb/s Transimpedance Amplifier in 0.18-um CMOS Technology, in”, 2006 Proceedings of the 32nd European Solid-State Circuits Conference, Sept 2006, pp. 520-523.10.1109/ESSCIR.2006.307504 Search in Google Scholar

[16] R. Y. Chen, T-S. Hung, and C.-Y. Hung, “A CMOS variable-gain transimpedance amplifier for infrared wireless data communications”, 2005 Digest of Technical Papers. International Conference on Consumer Electronics, 2005, ICCE., 2005, pp. 357-358.10.1109/ICCE.2005.1429865 Search in Google Scholar

[17] R. Ma, M. Liu, H. Zheng, and Z. Zhu, “A 77-db dynamic range low-power variable-gain transimpedance amplifier for linear ladar,”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 2, pp. 171-175, Feb 2018.10.1109/TCSII.2017.2684822 Search in Google Scholar

[18] P. Monsurro, A. Trifiletti, and T. Ytterdal, “A novel transimpedance amplifier with variable gain”, NORCHIP, 2010, pp. 1-4.10.1109/NORCHIP.2010.5669441 Search in Google Scholar

[19] C. Kuznia, J. Ahadian, D. Pommer, R. Hagan, P. Bachta, M. Wong, K. Kusumoto, S. Skendzic, C. Tabbert, and M. W. Beranek, “Novel high-resolution OTDR technology for multi-Gbps transceivers”, OFC 2014, March 2014, pp. 1-3.10.1364/OFC.2014.W1F.2 Search in Google Scholar

[20] S. Shahdoost, A. Medi, B. Bozorgzadeh, and N. Saniei, “A novel design methodology for low-noise and high-gain transimpedance amplifiers, in”, 2014 Argentine Conference on Micro-Nanoelectronics, Technology and Applications (EAMTA), July 2014, pp. 77-82.10.1109/EAMTA.2014.6906083 Search in Google Scholar

[21] J. Salvia, P. Lajevardi, M. Hekmat, and B. Murmann, “A 56M? CMOS TIA for MEMS applications”, 2009 IEEE Custom Integrated Circuits Conference, Sep. 2009, pp. 199-202.10.1109/CICC.2009.5280878 Search in Google Scholar

[22] B. Razavi, “A 622 Mb/s 4.5 pA/ (Hz) CMOS transimpedance amplifier [for optical receiver front-end]”, Hz2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056), in 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056), Feb 2000, pp. 162-163. Search in Google Scholar

[23] J. Hu, Y. Kim, and J. Ayers, “A low power 100MOmega CMOS front-end transimpedance amplifier for biosensing applications”, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, 2010, pp. 541-544.10.1109/MWSCAS.2010.5548884 Search in Google Scholar

[24] “A 65 nm CMOS ultra low power and low noise 131M front-end transimpedance amplifier”, 23rd IEEE International SOC Conference, 2010, pp. 281-284. Search in Google Scholar

[25] S. Shahdoost, A. Medi, and N. Saniei, “A 1.93pA/Hz 1.93\;{\rm{pA}}/\sqrt {{\rm{Hz}}} transimpedance amplifier for 2.5 Gb/s optical communications”, 2011 IEEE International Symposium of Circuits and Systems (ISCAS), May 2011, pp. 2889-2892.10.1109/ISCAS.2011.5938235 Search in Google Scholar

[26] S. Shahdoost, B. Bozorgzadeh, A. Medi, and N. Saniei, “Low-noise transimpedance amplifier design procedure for optical communications”, 22 nd Austrian Workshop on Microelectronics (Austrochip), Oct 2014, pp. 1-5.10.1109/Austrochip.2014.6946323 Search in Google Scholar

[27] P. Keshri, “Comparative study of transimpedance amplifier design for MEMS resonators for GSM communication systems”, Leland Stanford Junior University, Tech. Rep., 2010. Search in Google Scholar

[28] S. Shahdoost, A. Medi, and N. Saniei, “Design of low-noise transimpedance amplifiers with capacitive feed-back,”, Analog Integrated Circuits and Signal Processing, vol. 86, no. 2, pp. 233-240, 2016.10.1007/s10470-015-0669-x Search in Google Scholar

[29] Y. Zhang, V. Joyner, R. Yun, and S. Sonkusale, “A 700Mbit/s CMOS capacitive feedback front-end amplifier with automatic gain control for broadband optical wireless links, in”, 2008 IEEE International Symposium on Circuits and Systems, May 2008, pp. 185-188. Search in Google Scholar

eISSN:
1339-309X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other