Zacytuj

1. Ambrosy AP, Fonarow GC, Butler J, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123-1133. doi: 10.1016/j.jacc.2013.11.053.10.1016/j.jacc.2013.11.05324491689Search in Google Scholar

2. Lahoz R, Fagan A, McSharry M, Proudfoot C, Corda S, Studer R. Recurrent heart failure hospitalizations are associated with increased cardiovascular mortality in patients with heart failure in Clinical Practice Research Datalink. ESC Heart Fail. 2020;10.1002/ehf2.12727. doi: 10.1002/ehf2.12727.10.1002/ehf2.12727737393632383551Search in Google Scholar

3. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147-239. doi: 10.1161/CIR.0b013e31829e8807.10.1161/CIR.0b013e31829e880723741057Search in Google Scholar

4. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation. 2010;121:e46-e215. doi: 10.1161/CIRCULATIONAHA.109.192667.10.1161/CIRCULATIONAHA.109.19266720019324Search in Google Scholar

5. Guglin M, Zucker MJ, Borlaug BA, et al. Evaluation for heart transplantation and LVAD Implantation: JACC council perspectives. J Am Coll Cardiol. 2020;75:1471-1487. doi: 10.1016/j.jacc.2020.01.034.10.1016/j.jacc.2020.01.03432216916Search in Google Scholar

6. Goldstein DJ, Naka Y, Horstmanshof D, et al. Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: the multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol. 2020;5:411-419. doi: 10.1001/jamacardio.2019.5323.10.1001/jamacardio.2019.5323699074631939996Search in Google Scholar

7. Lui C, Suarez-Pierre A, Zhou X, et al. Effects of systemic and device-related complications in patients bridged to transplantation with left ventricular assist devices. J Surg Res. 2020;246:207-212. doi: 10.1016/j.jss.2019.08.016.10.1016/j.jss.2019.08.01631605947Search in Google Scholar

8. Williams ML, Trivedi JR, McCants KC, et al. Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann Thorac Surg. 2011;91:1330-1333. doi: 10.1016/j. athoracsur.2011.01.062.10.1016/j.athoracsur.2011.01.062Search in Google Scholar

9. Karason K, Lund LH, Dalen M, et al. Randomized trial of a left ventricular assist device as destination therapy versus guideline-directed medical therapy in patients with advanced heart failure. Rationale and design of the SWEdish evaluation of left Ventricular Assist Device (SweVAD) trial. Eur J Heart Fail. 2020;22:739-750. doi: 10.1002/ejhf.1773.10.1002/ejhf.177332100946Search in Google Scholar

10. Brandt EJ, Ross JS, Grady JN, et al. Impact of left ventricular assist devices and heart transplants on acute myocardial infarction and heart failure mortality and readmission measures. PloS one. 2020;15:e0230734. doi: 10.1371/journal. pone.0230734.10.1371/journal.pone.0230734Search in Google Scholar

11. Schramm R, Morshuis M, Schoenbrodt M, et al. Current perspectives on mechanical circulatory support. Eur J Cardiothorac Surg. 2019;55(Suppl 1):i31-i37. doi: 10.1093/ejcts/ezy444.10.1093/ejcts/ezy444652609830608535Search in Google Scholar

12. Mariani S, Chatterjee A, Hanke JS, et al. Is this the right MOMENTUM? – evidence from a HeartMate 3 randomized trial. J Thorac Dis. 2019;11:5626-5630. doi: 10.21037/jtd.2019.11.60.10.21037/jtd.2019.11.60698804132030285Search in Google Scholar

13. Schmitto JD, Pya Y, Zimpfer D, et al. Long-term evaluation of a fully magnetically levitated circulatory support device for advanced heart failure-two-year results from the HeartMate 3 CE Mark Study. Eur J Heart Fail. 2019;21:90-97. doi: 10.1002/ejhf.1284.10.1002/ejhf.128430052304Search in Google Scholar

14. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device – final report. N Engl J Med. 2019;380:1618-1627. doi: 10.1056/NEJMoa1900486.10.1056/NEJMoa190048630883052Search in Google Scholar

15. Boruah P, Saqib N, Barooah J, Baruah D, Sharma P. Left Ventricular Assist Device: what the internist needs to know. A review of the literature. Cureus. 2019;11:e4399. doi: 10.7759/cureus.4399.10.7759/cureus.4399655967631245189Search in Google Scholar

16. Kirklin JK, Pagani FD, Kormos RL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36:1080-1086. doi: 10.1016/j.healun.2017.07.005.10.1016/j.healun.2017.07.00528942782Search in Google Scholar

17. Kilic A, Acker MA, Atluri P. Dealing with surgical left ventricular assist device complications. J Thorac Dis. 2015;7:2158-2164. doi: 10.3978/j.issn.2072-1439.2015.10.64.Search in Google Scholar

18. Olmsted RZ, Critsinelis A, Kurihara C, et al. Severe LVAD-related infections requiring surgical treatment: Incidence, predictors, effect on survival, and impact of device selection. J Card Surg. 2019;34:82-91. doi: 10.1111/jocs.13987.10.1111/jocs.1398730710496Search in Google Scholar

19. O'Horo JC, Abu Saleh OM, Stulak JM, Wilhelm MP, Baddour LM, Rizwan Sohail M. Left Ventricular Assist Device infections: a systematic review. ASAIO J. 2018;64:287-294. doi: 10.1097/MAT.0000000000000684.10.1097/MAT.0000000000000684592073729095732Search in Google Scholar

20. Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376:451-460. doi: 10.1056/NEJMoa1602954.10.1056/NEJMoa160295428146651Search in Google Scholar

21. Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med. 2018;378:1386-1395. doi: 10.1056/NEJMoa1800866.10.1056/NEJMoa180086629526139Search in Google Scholar

22. Han JJ, Acker MA, Atluri P. Left ventricular assist devices. Circulation. 2018;138:2841-2851. doi: 10.1161/CIRCULATIONAHA.118.035566.10.1161/CIRCULATIONAHA.118.03556630565993Search in Google Scholar

23. Patel CB, Blue L, Cagliostro B, et al. Left ventricular assist systems and infection-related outcomes: A comprehensive analysis of the MOMENTUM 3 trial. J Heart Lung Transplant. 2020;S1053-2498. doi: 10.1016/j.healun.2020.03.002.10.1016/j.healun.2020.03.00232276809Search in Google Scholar

24. Tam MC, Patel VN, Weinberg RL, et al. Diagnostic Accuracy of FDG PET/CT in Suspected LVAD Infections: A Case Series, Systematic Review, and Meta-Analysis. JACC Cardiovasc imaging. 2020;13:1191-1202. doi: 10.1016/j.jcmg.2019.04.024.10.1016/j.jcmg.2019.04.024698025731326483Search in Google Scholar

25. Leebeek FWG, Muslem R. Bleeding in critical care associated with left ventricular assist devices: pathophysiology, symptoms, and management. Hematology Am Soc Hematol Educ Program. 2019;2019:88-96. doi: 10.1182/hematology.2019000067.10.1182/hematology.2019000067691350231808855Search in Google Scholar

26. Molina TL, Krisl JC, Donahue KR, Varnado S. Gastrointestinal bleeding in left ventricular assist device: octreotide and other treatment modalities. ASAIO J. 2018;64:433-439. doi: 10.1097/MAT.0000000000000758.10.1097/MAT.000000000000075829406356Search in Google Scholar

27. Shah P, Tantry US, Bliden KP, Gurbel PA. Bleeding and thrombosis associated with ventricular assist device therapy. J Heart Lung Transplant. 2017;36:1164-1173. doi: 10.1016/j. healun.2017.05.008.10.1016/j.healun.2017.05.008Search in Google Scholar

28. Imamura T, Kinugawa K, Uriel N. Therapeutic strategy for gastrointestinal bleeding in patients with left ventricular assist device. Circulation. 2018;82:2931-2938. doi: 10.1253/circj.CJ-18-0883.10.1253/circj.CJ-18-088330369592Search in Google Scholar

29. Juricek C, Imamura T, Nguyen A, et al. Long-acting octreotide reduces the recurrence of gastrointestinal bleeding in patients with a continuous-flow Left Ventricular Assist Device. J Card Fail. 2018;24:249-254. doi: 10.1016/j.cardfail.2018.01.011.10.1016/j.cardfail.2018.01.011589711629427603Search in Google Scholar

30. Namdaran P, Zikos TA, Pan JY, Banerjee D. Thalidomide use reduces risk of refractory gastrointestinal bleeding in patients with continuous flow left ventricular assist devices. ASAIO J. 2020;66:645-651. doi: 10.1097/MAT.0000000000001054.10.1097/MAT.000000000000105431425265Search in Google Scholar

31. Elder T, Raghavan A, Smith A, et al. Outcomes after intracranial hemorrhage in patients with left ventricular assist devices: a systematic review of literature. World Neurosurgery. 2019;132:265-272. doi: 10.1016/j.wneu.2019.08.211.10.1016/j.wneu.2019.08.21131493616Search in Google Scholar

32. Veasey TM, Floroff CK, Strout SE, et al. Evaluation of anticoagulation and nonsurgical major bleeding in recipients of continuous-flow left ventricular assist devices. Artif Organs. 2019;43:736-744. doi: 10.1111/aor.13456.10.1111/aor.1345630868618Search in Google Scholar

33. Scandroglio AM, Kaufmann F, Pieri M, et al. Diagnosis and treatment algorithm for blood flow obstructions in patients with left ventricular assist device. J Am Coll Cardiol. 2016;67:2758-2768. doi: 10.1016/j.jacc.2016.03.573.10.1016/j.jacc.2016.03.57327282897Search in Google Scholar

34. Alnabelsi T, Shafii AE, Gurley JC, Dulnuan K, Harris DD, 2nd, Guglin M. Left Ventricular Assist Device Outflow Graft Obstruction: A Complication Specific to Polytetrafluoroethylene Covering. A Word of Caution! ASAIO J. 2019;65:e58-e62. doi: 10.1097/MAT.0000000000000929.10.1097/MAT.000000000000092930575627Search in Google Scholar

35. Maltais S, Kilic A, Nathan S, et al. PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management: The PREVENT multi-center study. J Heart Lung Transplant. 2017;36:1-12. doi: 10.1016/j.healun.2016.10.001.10.1016/j.healun.2016.10.00127865732Search in Google Scholar

36. Sato T, Fujino T, Higo T, et al. Flow pattern of outflow graft is useful for detecting pump thrombosis in a patient with left ventricular assist device. Int Heart J. 2019;60:994-997. doi: 10.1536/ihj.18-600.10.1536/ihj.18-60031257336Search in Google Scholar

37. Hurst TE, Xanthopoulos A, Ehrlinger J, et al. Dynamic prediction of left ventricular assist device pump thrombosis based on lactate dehydrogenase trends. ESC Heart Fail. 2019;6:1005-1014. doi: 10.1002/ehf2.12473.10.1002/ehf2.12473681606331318170Search in Google Scholar

38. Ferrera C, Gonzalez Fernandez O, Bouzas N, et al. Neutrophil to lymphocyte ratio is related to thrombotic complications and survival in continuous flow left ventricular assist devices. ASAIO J. 2020;66:199-204. doi: 10.1097/MAT.0000000000000971.10.1097/MAT.000000000000097130913104Search in Google Scholar

39. Usman MS, Ahmed S, Yamani N, et al. Meta-analysis of the effect of preoperative atrial fibrillation on outcomes after left ventricular assist device implantation. Am J Cardiol. 2019;124:158-162. doi: 10.1016/j.amjcard.2019.03.038.10.1016/j.amjcard.2019.03.03831047654Search in Google Scholar

40. Imamura T, Kinugawa K, Ono M, et al. Implication of preoperative existence of atrial fibrillation on hemocompatibility-related adverse events during left ventricular assist device support. Circulation. 2019;83:1286-1292. doi: 10.1253/circj.CJ-18-1215.10.1253/circj.CJ-18-121531019163Search in Google Scholar

41. Gordon JS, Maynes EJ, Choi JH, et al. Ventricular arrhythmias following continuous-flow left ventricular assist device implantation: A systematic review. Artif Organs. 2020;10.1111/aor.13665. doi: 10.1111/aor.13665.10.1111/aor.1366532043582Search in Google Scholar

42. Grinstein J, Garan AR, Oesterle A, et al. Increased rate of pump thrombosis and cardioembolic events following ventricular tachycardia ablation in patients supported with left ventricular assist devices. ASAIO J. 2020;10.1097/MAT.0000000000001155. doi: 10.1097/MAT.0000000000001155.10.1097/MAT.000000000000115533136600Search in Google Scholar

43. Saeed O, Colombo PC, Mehra MR, et al. Effect of aspirin dose on hemocompatibility-related outcomes with a magnetically levitated left ventricular assist device: An analysis from the MOMENTUM 3 study. J Heart Lung Transplant. 2020;39:518-525. doi: 10.1016/j.healun.2020.03.001.10.1016/j.healun.2020.03.001765030432340871Search in Google Scholar

44. Imamura T, Narang N, Kim G, et al. Decoupling between diastolic pulmonary artery and pulmonary capillary wedge pressures is associated with right ventricular dysfunction and hemocompatibility-related adverse events in patients with left ventricular assist devices. J Am Heart Assoc. 2020;9:e014801. doi: 10.1161/JAHA.119.014801.10.1161/JAHA.119.014801742862432223394Search in Google Scholar

45. Kirklin JK, Naftel DC, Myers SL, Pagani FD, Colombo PC. Quantifying the impact from stroke during support with continuous flow ventricular assist devices: An STS INTERMACS analysis. J Heart Lung Transplant. 2020; S1053-2498. doi: 10.1016/j.healun.2020.04.006.10.1016/j.healun.2020.04.00632376278Search in Google Scholar

46. Lanfear AT, Hamandi M, Fan J, DiMaio JM, George TJ. Trends in HeartMate 3: What we know so far. J Card Surg. 2020;35:180-187. doi: 10.1111/jocs.14319.10.1111/jocs.1431931692113Search in Google Scholar

47. Cho SM, Starling RC, Teuteberg J, et al. Understanding risk factors and predictors for stroke subtypes in the ENDURANCE trials. J Heart Lung Transplant. 2020;S1053-2498. doi: 10.1016/j.healun.2020.01.1330.10.1016/j.healun.2020.01.133032044205Search in Google Scholar

48. Cho SM, Moazami N, Katz S, Bhimraj A, Shrestha NK, Frontera JA. Stroke risk following infection in patients with continuous-flow left ventricular assist device. Neurocrit Care. 2019;31:72-80. doi: 10.1007/s12028-018-0662-1.10.1007/s12028-018-0662-130644037Search in Google Scholar

49. Hassett CE, Cho SM, Rice CJ, et al. Cerebral microembolization in left ventricular assist device associated ischemic events. J Stroke Cerebrovasc Dis. 2020;29:104660. doi: 10.1016/j. jstrokecerebrovasdis.2020.104660.10.1016/j.jstrokecerebrovasdis.2020.104660Search in Google Scholar

50. Vieira JL, Pfeffer M, Claggett BL, et al. The impact of statin therapy on neurological events following left ventricular assist system implantation in advanced heart failure. J Heart Lung Transplant. 2020;39:582-592. doi: 10.1016/j. healun.2020.02.017.10.1016/j.healun.2020.02.017Search in Google Scholar

51. Imamura T, Narang N, Kim G, et al. Aortic Insufficiency during HeartMate 3 Left Ventricular Assist Device Support: AI in HeartMate 3. J Card Fail. 2020;S1071-9164. doi: 10.1016/j. cardfail.2020.05.013.Search in Google Scholar

52. Kagawa H, Aranda-Michel E, Kormos RL, et al. Aortic insufficiency after left ventricular assist device implantation: predictors and outcomes. Ann Thorac Surg. 2020; S0003-4975. doi: 10.1016/j.athoracsur.2019.12.030.10.1016/j.athoracsur.2019.12.03031991135Search in Google Scholar

53. Imamura T, Kim G, Nitta D, et al. Aortic insufficiency and hemocompatibility-related adverse events in patients with left ventricular assist devices. J Card Fail. 2019;25:787-794. doi: 10.1016/j.cardfail.2019.08.003.10.1016/j.cardfail.2019.08.003682312431419485Search in Google Scholar

54. Goodwin ML, Bobba CM, Mokadam NA, et al. Continuous-flow left ventricular assist devices and the aortic valve: interactions, issues, and surgical therapy. Curr Heart Fail Rep. 2020;10.1007/s11897-020-00464-0. doi: 10.1007/s11897-020-00464-0.10.1007/s11897-020-00464-032488504Search in Google Scholar

55. Kar B, Prathipati P, Jumean M, Nathan SS, Gregoric ID. Management of aortic insufficiency using transcatheter aortic valve replacement in patients with left ventricular assist device support. ASAIO J. 2020;66:e82-e6. doi: 10.1097/MAT.0000000000001053.10.1097/MAT.000000000000105331425270Search in Google Scholar

56. Yehya A, Rajagopal V, Meduri C, et al. Short-term results with transcatheter aortic valve replacement for treatment of left ventricular assist device patients with symptomatic aortic insufficiency. J Heart Lung Transplant. 2019;38:920-926. doi: 10.1016/j.healun.2019.03.001.10.1016/j.healun.2019.03.00130898555Search in Google Scholar

57. Kirklin JK, Naftel DC, Kormos RL, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32:141-156. doi: 10.1016/j.healun.2012.12.004.10.1016/j.healun.2012.12.00423352390Search in Google Scholar

58. Movahedi F, Kormos RL, Lohmueller L, et al. Sequential pattern mining of longitudinal adverse events after Left Ventricular Assist Device implant. IEEE J Biomed Health Inform. 2019;24:2347-2358. doi: 10.1109/JBHI.2019.2958714.10.1109/JBHI.2019.2958714846252531831453Search in Google Scholar

59. Kilic A, Seese L, Pagani F, Kormos R. Identifying temporal relationships between in-hospital adverse events after implantation of durable left ventricular assist devices. J Am Heart Assoc. 2020;9:e015449. doi: 10.1161/JAHA.119.015449.10.1161/JAHA.119.015449742853432285751Search in Google Scholar

60. Jiritano F, Coco VL, Matteucci M, Fina D, Willers A, Lorusso R. Temporary mechanical circulatory support in acute heart failure. Card Fail Rev. 2020;6:1-7. doi: 10.15420/cfr.2019.02.10.15420/cfr.2019.02711130332257388Search in Google Scholar

61. Crowley J, Cronin B, Essandoh M, D'Alessandro D, Shelton K, Dalia AA. Transesophageal echocardiography for Impella placement and management. J Cardiothorac Vasc Anesth. 2019;33:2663-2668. doi: 10.1053/j.jvca.2019.01.048.10.1053/j.jvca.2019.01.04830770179Search in Google Scholar

62. Monteagudo-Vela M, Simon A, Riesgo Gil F, et al. Clinical indications of IMPELLA short-term mechanical circulatory support in a tertiary Centre. Cardiovasc Revascularization Med. 2020;21:629-637. doi: 10.1016/j.carrev.2019.12.010.10.1016/j.carrev.2019.12.01031859100Search in Google Scholar

63. Maniuc O, Salinger T, Anders F, et al. Impella CP use in patients with non-ischaemic cardiogenic shock. ESC Heart Fail. 2019;6:863-866. doi: 10.1002/ehf2.12446.10.1002/ehf2.12446667628031095902Search in Google Scholar

64. Johannsen L, Mahabadi AA, Totzeck M, et al. Access site complications following Impella-supported high-risk percutaneous coronary interventions. Sci Rep. 2019;9:17844. doi: 10.1038/s41598-019-54277-w.10.1038/s41598-019-54277-w688283431780769Search in Google Scholar

65. Elkayam U, Schäfer A, Chieffo A, et al. Use of Impella heart pump for management of women with peripartum cardiogenic shock. Clin Cardiol. 2019;42:974-981. doi: 10.1002/clc.23249.10.1002/clc.23249678847331436333Search in Google Scholar

66. Wernly B, Seelmaier C, Leistner D, et al. Mechanical circulatory support with Impella versus intra-aortic balloon pump or medical treatment in cardiogenic shock – a critical appraisal of current data. Clin Res Cardiol. 2019;108:1249-1257. doi: 10.1007/s00392-019-01458-2.10.1007/s00392-019-01458-230900010Search in Google Scholar

67. Rohm CL, Gadidov B, Leitson M, Ray HE, Prasad R. Predictors of mortality and outcomes of acute severe cardiogenic shock treated with the Impella device. Am J Cardiol. 2019;124:499-504. doi: 10.1016/j.amjcard.2019.05.039.10.1016/j.amjcard.2019.05.03931262498Search in Google Scholar

eISSN:
2457-5518
Język:
Angielski