This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: A review. Medical and Biological Engineering and Computing, 44(12), 1031–1051.AcharyaU. R.JosephK. P.KannathalN.LimC. M.SuriJ. S.2006Heart rate variability: A reviewMedical and Biological Engineering and Computing441210311051Search in Google Scholar
Aditya Pramanta, S. P. L., Prihatmanto, A. S., & Park, M. G. (2016). A study on the stress identification using observed heart beat data. Proc. 6th International Conference on System Engineering and Technology (ICSET), 149–152.Aditya PramantaS. P. L.PrihatmantoA. S.ParkM. G.2016A study on the stress identification using observed heart beat dataProc. 6th International Conference on System Engineering and Technology (ICSET)149152Search in Google Scholar
Adler, N., Stewart, J., Cohen, S., Cullen, M., Roux, A. D., Dow, W., Evans, J., Kawachi, I., Marmot, M., Matthews, K., McEwen, B., Schwartz, J., Seeman, T., & Williams, D. (2007). Reaching for a healthier life: Facts on socioeconomic status and health in the US (tech. rep.) [Online]. Available: https://macses.ucsf.edu/downloads/Reaching_for_a_Healthier_Life.pdf]. The John D. and Catherine T. MacArthur Foundation Research Network on Socioeconomic Status and Health. San Francisco, CA, USA.AdlerN.StewartJ.CohenS.CullenM.RouxA. D.DowW.EvansJ.KawachiI.MarmotM.MatthewsK.McEwenB.SchwartzJ.SeemanT.WilliamsD.2007Reaching for a healthier life: Facts on socioeconomic status and health in the US (tech. rep.) [Online]Available: https://macses.ucsf.edu/downloads/Reaching_for_a_Healthier_Life.pdf].The John D. and Catherine T. MacArthur Foundation Research Network on Socioeconomic Status and HealthSan Francisco, CA, USASearch in Google Scholar
Afonso, V. X. (1993). ECG QRS detection. In W. J. Tompkins (Ed.), Biomedical digital signal processing: C-language examples and laboratory experiments for the IBM pc (pp. 236–264). Prentice-Hall.AfonsoV. X.1993ECG QRS detectionInTompkinsW. J.(Ed.),Biomedical digital signal processing: C-language examples and laboratory experiments for the IBM pc236264Prentice-HallSearch in Google Scholar
Ahlstrom, M. L., & J., T. W. (1985). Digital filters for real-time ECG signal processing using microprocessors. IEEE Transactions on Biomedical Engineering, BME-32(9), 708–713.AhlstromM. L.T.W. J.1985Digital filters for real-time ECG signal processing using microprocessorsIEEE Transactions on Biomedical EngineeringBME-329708713Search in Google Scholar
Akay, M. (2012). Biomedical signal processing. Academic Press.AkayM.2012Biomedical signal processingAcademic PressSearch in Google Scholar
Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220–222.AkselrodS.GordonD.UbelF. A.ShannonD. C.BergerA. C.CohenR. J.1981Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular controlScience2134504220222Search in Google Scholar
Al-Hazimi, A., Al-Ama, N., Syiamic, A., Qosti, R., & Abdel-Galil, K. (2002). Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy. Annals of Saudi Medicine, 22(5-6), 400–403.Al-HazimiA.Al-AmaN.SyiamicA.QostiR.Abdel-GalilK.2002Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathyAnnals of Saudi Medicine225-6400403Search in Google Scholar
Alhussainy, A. M. H. (2020). QRS complex detection and R–R interval computation based on discrete wavelet transform. International journal on smart sensing and intelligent systems, 13(1), 1–11.AlhussainyA. M. H.2020QRS complex detection and R–R interval computation based on discrete wavelet transformInternational journal on smart sensing and intelligent systems131111Search in Google Scholar
Arzeno, N. M., Poon, C. S., & Deng, Z. D. (2006). Quantitative analysis of QRS detection algorithms based on first derivative of the ECG. Proc. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 1788–1791.ArzenoN. M.PoonC. S.DengZ. D.2006Quantitative analysis of QRS detection algorithms based on first derivative of the ECGProc. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)17881791Search in Google Scholar
Badre, D. (2021). Tips from neuroscience to keep you focused on hard tasks. Nature.BadreD.2021Tips from neuroscience to keep you focused on hard tasksNatureSearch in Google Scholar
Balda, R. A., Diller, G., Deardorff, E., Doue, J., & Hsieh, P. (1977). The HPECG analysis program. In J. H. van Bemmel & J. L. Willems (Eds.), Proceedings of the ifip working conference trends in computer processed electrocardiograms (pp. 197–204). North-Holland Publishing Company.BaldaR. A.DillerG.DeardorffE.DoueJ.HsiehP.1977The HPECG analysis programInvan BemmelJ. H.WillemsJ. L.(Eds.),Proceedings of the ifip working conference trends in computer processed electrocardiograms197204North-Holland Publishing CompanySearch in Google Scholar
Bando, S., Nozawa, A., & Matsuya, Y. (2015). Multidimensional directed coherence analysis of keystroke dynamics and physiological responses. Proc. IEEE International Conference on Noise and Fluctuations (ICNF), 1–4.BandoS.NozawaA.MatsuyaY.2015Multidimensional directed coherence analysis of keystroke dynamics and physiological responsesProc. IEEE International Conference on Noise and Fluctuations (ICNF)14Search in Google Scholar
Bansal, D., Khan, M., & Salhan, A. K. (2007). An ECG monitoring system having simple interface with computer capable of real time data transfer. Proc. International Conference on Engineering the future of Biology & Medicine, 1–7.BansalD.KhanM.SalhanA. K.2007An ECG monitoring system having simple interface with computer capable of real time data transferProc. International Conference on Engineering the future of Biology & Medicine17Search in Google Scholar
Barreto, A., Zhai, J., & Adjouadi, M. (2007). Non-intrusive physiological monitoring for automated stress detection in human-computer interaction. In M. Lew, N. Sebe, T. S. Huang & E. M. Bakker (Eds.), Proc. International Workshop on Human-Computer Interaction (HCI) (pp. 29–38). Springer.BarretoA.ZhaiJ.AdjouadiM.2007Non-intrusive physiological monitoring for automated stress detection in human-computer interactionInLewM.SebeN.HuangT. S.BakkerE. M.(Eds.),Proc. International Workshop on Human-Computer Interaction (HCI)2938SpringerSearch in Google Scholar
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90–101.BehzadiY.RestomK.LiauJ.LiuT. T.2007A component based noise correction method (CompCor) for BOLD and perfusion based fMRINeuroimage37190101Search in Google Scholar
Betti, S., Lova, R. M., Rovini, E., Acerbi, G., Santarelli, L., Cabiati, M., Ry, S. D., & Cavallo, F. (2018). Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Transactions on Biomedical Engineering, 65(8), 1748–1758.BettiS.LovaR. M.RoviniE.AcerbiG.SantarelliL.CabiatiM.RyS. D.CavalloF.2018Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markersIEEE Transactions on Biomedical Engineering65817481758Search in Google Scholar
Beyramienanlou, H., & Lotfivand, N. (2017). Shannon’s energy based algorithm in ECG signal processing. Computational and Mathematical Methods in Medicine, 2017, 1–16.BeyramienanlouH.LotfivandN.2017Shannon’s energy based algorithm in ECG signal processingComputational and Mathematical Methods in Medicine2017116Search in Google Scholar
Bhattacharyya, P. K., & Lowe, M. J. (2004). Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations. Magnetic Resonance Imaging, 22(1), 9–13.BhattacharyyaP. K.LoweM. J.2004Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuationsMagnetic Resonance Imaging221913Search in Google Scholar
Billman, G. E., Huikuri, H. V., Sacha, J., & Trimmel, K. (2015). An introduction to heart rate variability: Methodological considerations and clinical applications. Frontiers in Physiology, 6(55), 1–3.BillmanG. E.HuikuriH. V.SachaJ.TrimmelK.2015An introduction to heart rate variability: Methodological considerations and clinical applicationsFrontiers in Physiology65513Search in Google Scholar
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.BishopC. M.2006Pattern recognition and machine learningSpringerSearch in Google Scholar
Bland, J. M., & Altman, D. G. (1996). Transformations, means, and confidence intervals. BMJ: British Medical Journal, 312(7038), 1079.BlandJ. M.AltmanD. G.1996Transformations, means, and confidence intervalsBMJ: British Medical Journal31270381079Search in Google Scholar
Blaug, R., Kenyon, A., & Lekhi, R. (2007). Stress at work: A report prepared for the work foundation’s principal partners (tech. rep. 2(2)) [[Online]. Available: https://westminsterresearch.westminster.ac.uk/item/91wvv/stress-at-work-a-report-preparedfor-thework-foundation-s-principal-partners]. The Work Foundation. London, UK.BlaugR.KenyonA.LekhiR.2007Stress at work: A report prepared for the work foundation’s principal partners (tech. rep. 2(2)) [[Online]Available: https://westminsterresearch.westminster.ac.uk/item/91wvv/stress-at-work-a-report-preparedfor-thework-foundation-s-principal-partners].The Work FoundationLondon, UKSearch in Google Scholar
Bousefsaf, F., Maaoui, C., & Pruski, A. (2013). Remote assessment of the heart rate variability to detect mental stress. Proc. 7th International Conference on Pervasive Computing Technologies for Healthcare, 348–351.BousefsafF.MaaouiC.PruskiA.2013Remote assessment of the heart rate variability to detect mental stressProc. 7th International Conference on Pervasive Computing Technologies for Healthcare348351Search in Google Scholar
Bracha, H. S. (2004). Freeze, flight, fight, fright, faint: Adaptationist perspectives on the acute stress response spectrum. CNS Spectrums, 9(9), 679–685.BrachaH. S.2004Freeze, flight, fight, fright, faint: Adaptationist perspectives on the acute stress response spectrumCNS Spectrums99679685Search in Google Scholar
Brouwer, A. M., Dijksterhuis, C., & van Erp, J. B. (2015). Physiological correlates of mental effort a manipulated through lane width during simulated driving. Proc. IEEE International Conference on Affective Computing and Intelligent Interaction (ACII), 42–48.BrouwerA. M.DijksterhuisC.van ErpJ. B.2015Physiological correlates of mental effort a manipulated through lane width during simulated drivingProc. IEEE International Conference on Affective Computing and Intelligent Interaction (ACII)4248Search in Google Scholar
Brüser, C., Antink, C. H., Wartzek, T., Walter, M., & Leonhardt, S. (2015). Ambient and unobtrusive cardio respiratory monitoring techniques. IEEE Reviews in Biomedical Engineering, 8, 30–43.BrüserC.AntinkC. H.WartzekT.WalterM.LeonhardtS.2015Ambient and unobtrusive cardio respiratory monitoring techniquesIEEE Reviews in Biomedical Engineering83043Search in Google Scholar
Burg, J. M., Wolf, O. T., & Michalak, J. (2012). Mindfulness as self-regulated attention. Swiss Journal of Psychology, 71(3), 135–139.BurgJ. M.WolfO. T.MichalakJ.2012Mindfulness as self-regulated attentionSwiss Journal of Psychology713135139Search in Google Scholar
Capdevila, L., Castro-Marrero, J., Alegre, J., Ramos-Castro, J., & Escorihuela, R. M. (2021). Analysis of gender differences in hrv of patients with myalgic encephalomyelitis/chronic fatigue syndrome using mobile-health technology. Sensors, 21(11).CapdevilaL.Castro-MarreroJ.AlegreJ.Ramos-CastroJ.EscorihuelaR. M.2021Analysis of gender differences in hrv of patients with myalgic encephalomyelitis/chronic fatigue syndrome using mobile-health technologySensors2111Search in Google Scholar
Capuana, L. J., Dywan, J., Tays, W. J., Elmers, J. L., Witherspoon, R., & Segalowitz, S. J. (2014). Factors influencing the role of cardiac autonomic regulation in the service of cognitive control. Biol Psychol, 120, 88–97.CapuanaL. J.DywanJ.TaysW. J.ElmersJ. L.WitherspoonR.SegalowitzS. J.2014Factors influencing the role of cardiac autonomic regulation in the service of cognitive controlBiol Psychol1208897Search in Google Scholar
Casaleggio, A., Corana, A., & Ridella, S. (1995). Correlation dimension estimation from electrocardiograms. Chaos, Solitons & Fractals, 5(3-4), 713–726.CasaleggioA.CoranaA.RidellaS.1995Correlation dimension estimation from electrocardiogramsChaos, Solitons & Fractals53-4713726Search in Google Scholar
Castaldo, R., Melillo, P., Bracale, U., Caserta, M., Triassi, M., & Pecchia, L. (2015). Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomedical Signal Processing and Control, 18, 370–377.CastaldoR.MelilloP.BracaleU.CasertaM.TriassiM.PecchiaL.2015Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysisBiomedical Signal Processing and Control18370377Search in Google Scholar
Castaldo, R., Xu, W., Melillo, P., Pecchia, L., Santamaria, L., & James, C. (2016). Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis. Proc. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 3805–3808.CastaldoR.XuW.MelilloP.PecchiaL.SantamariaL.JamesC.2016Detection of mental stress due to oral academic examination via ultra-short-term HRV analysisProc. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)38053808Search in Google Scholar
Catai, A. M., Pastre, C. M., Godoy, M. F., Silva, E. D., Takahashi, A. C. M., & Vanderlei, L. C. M. (2019). Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz J Phys Ther., 24(2), 91–102.CataiA. M.PastreC. M.GodoyM. F.SilvaE. D.TakahashiA. C. M.VanderleiL. C. M.2019Heart rate variability: are you using it properly? Standardisation checklist of proceduresBraz J Phys Ther24291102Search in Google Scholar
Chalmers, J. A., Quintana, D. S., Abbott, M. J., & Kemp, A. H. (2014). Anxiety disorders are associated with reduced heart rate variability: A meta-analysis. Frontiers in Psychiatry, 5(80), 1–11.ChalmersJ. A.QuintanaD. S.AbbottM. J.KempA. H.2014Anxiety disorders are associated with reduced heart rate variability: A meta-analysisFrontiers in Psychiatry580111Search in Google Scholar
Chandola, T., Heraclides, A., & Kumari, M. (2010). Psychophysiological biomarkers of workplace stressors. Neuroscience & Biobehavioral Reviews, 35(1), 51–57.ChandolaT.HeraclidesA.KumariM.2010Psychophysiological biomarkers of workplace stressorsNeuroscience & Biobehavioral Reviews3515157Search in Google Scholar
Chen, C.-M., Anastasova, S., Zhang, K., Rosa, B. G., Lo, B. P. L., Assender, H. E., & Yang, G.-Z. (2020). Towards wearable and flexible sensors and circuits integration for stress monitoring. IEEE Journal of Biomedical and Health Informatics, 24(8), 2208–2215.ChenC.-M.AnastasovaS.ZhangK.RosaB. G.LoB. P. L.AssenderH. E.YangG.-Z.2020Towards wearable and flexible sensors and circuits integration for stress monitoringIEEE Journal of Biomedical and Health Informatics24822082215Search in Google Scholar
Choi, H. A. (2017). Listening with your heart. Science Translational Medicine, 9(414).ChoiH. A.2017Listening with your heartScience Translational Medicine9414Search in Google Scholar
Choi, J., & Gutierrez-Osuna, R. (2011). Removal of respiratory influences from heart rate variability in stress monitoring. IEEE Sensors Journal, 11(11), 2649–2656.ChoiJ.Gutierrez-OsunaR.2011Removal of respiratory influences from heart rate variability in stress monitoringIEEE Sensors Journal111126492656Search in Google Scholar
Chon, K. H., Scully, C. G., & Lu, S. (2009). Approximate entropy for all signals. IEEE Engineering in Medicine and Biology Magazine, 28(6), 18–23.ChonK. H.ScullyC. G.LuS.2009Approximate entropy for all signalsIEEE Engineering in Medicine and Biology Magazine2861823Search in Google Scholar
Cox, J. R., Nolle, F. M., Fozzard, H. A., & Oliver, G. C. (1968). Aztec, a preprocessing program for real-time ecg rhythm analysis. IEEE Transactions on Biomedical Engineering, BME-15(2), 128–129.CoxJ. R.NolleF. M.FozzardH. A.OliverG. C.1968Aztec, a preprocessing program for real-time ecg rhythm analysisIEEE Transactions on Biomedical EngineeringBME-152128129Search in Google Scholar
Cropanzano, R. S., Massaro, S., & Becker, W. J. (2017). Deontic justice and organizational neuroscience. Journal of Business Ethics, 144(4), 733–754.CropanzanoR. S.MassaroS.BeckerW. J.2017Deontic justice and organizational neuroscienceJournal of Business Ethics1444733754Search in Google Scholar
Crowley, O. V., McKinley, P. S., Burg, M. M., Schwartz, J. E., Ryff, C. D., Weinstein, M., Seeman, T. E., & Sloan, R. P. (2011). The interactive effect of change in perceived stress and trait anxiety on vagal recovery from cognitive challenge. International Journal of Psychophysiology, 82(3), 225–232.CrowleyO. V.McKinleyP. S.BurgM. M.SchwartzJ. E.RyffC. D.WeinsteinM.SeemanT. E.SloanR. P.2011The interactive effect of change in perceived stress and trait anxiety on vagal recovery from cognitive challengeInternational Journal of Psychophysiology823225232Search in Google Scholar
Daskalov, I. K., & Christov, I. I. (1999). Electrocardiogram signal pre processing for automatic detection of QRS boundaries. Medical Engineering & Physics, 21(1), 37–44.DaskalovI. K.ChristovI. I.1999Electrocardiogram signal pre processing for automatic detection of QRS boundariesMedical Engineering & Physics2113744Search in Google Scholar
De Nadai, S., D’Incà, M., Parodi, F., Benza, M., Trotta, A., Zero, E., Zero, L., & Sacile, R. (2016). Enhancing safety of transport by road by on-line monitoring of driver emotions. Proc. IEEE 11th System of Systems Engineering Conference (SoSE), 1–4.De NadaiS.D’IncàM.ParodiF.BenzaM.TrottaA.ZeroE.ZeroL.SacileR.2016Enhancing safety of transport by road by on-line monitoring of driver emotionsProc. IEEE 11th System of Systems Engineering Conference (SoSE)14Search in Google Scholar
Delmastro, F., Martino, F. D., & Dolciotti, C. (2020). Cognitive training and stress detection in mci frail older people through wearable sensors and machine learning. IEEE Access, 8, 65573–65590.DelmastroF.MartinoF. D.DolciottiC.2020Cognitive training and stress detection in mci frail older people through wearable sensors and machine learningIEEE Access86557365590Search in Google Scholar
Dobbs, S. E., Schmitt, N. M., & Ozemek, H. S. (1984). QRS detection by template matching using real-time correlation on a microcomputer. Journal of Clinical Engineering, 9(3), 197–212.DobbsS. E.SchmittN. M.OzemekH. S.1984QRS detection by template matching using real-time correlation on a microcomputerJournal of Clinical Engineering93197212Search in Google Scholar
Dossett, M. L., Fricchione, G. L., & Benson, H. (2020). A new era for mind–body medicine. New England Journal of Medicine, 382(15), 1390–1391.DossettM. L.FricchioneG. L.BensonH.2020A new era for mind–body medicineNew England Journal of Medicine3821513901391Search in Google Scholar
Eckberg, D. L. (1983). Human sinus arrhythmia as an index of vagal cardiac outflow. Journal of Applied Physiology, 54(4), 961–966.EckbergD. L.1983Human sinus arrhythmia as an index of vagal cardiac outflowJournal of Applied Physiology544961966Search in Google Scholar
Elfenbein, H. A. (2017). Emotion in organizations: A review and theoretical integration. Academy of Management Annals, 1(1), 315–386.ElfenbeinH. A.2017Emotion in organizations: A review and theoretical integrationAcademy of Management Annals11315386Search in Google Scholar
Engert, V., Kok, B. E., Papassotiriou, I., Chrousos, G. P., & Singer, T. (2017). Specific reduction in cortisol stress reactivity after social but not attention-based mental training. Sci Adv., 3(10).EngertV.KokB. E.PapassotiriouI.ChrousosG. P.SingerT.2017Specific reduction in cortisol stress reactivity after social but not attention-based mental trainingSci Adv310Search in Google Scholar
Engin, M. (2004). ECG beat classification using neuro-fuzzy network. Pattern Recognition Letters, 25(15), 1715–1722.EnginM.2004ECG beat classification using neuro-fuzzy networkPattern Recognition Letters251517151722Search in Google Scholar
Fox, C. J., Mueller, S. T., Gray, H. M., Raber, J., & Piper, B. J. (2013). Evaluation of a short-form of the Berg Card Sorting Test. PloS One, 8(5), 1–4.FoxC. J.MuellerS. T.GrayH. M.RaberJ.PiperB. J.2013Evaluation of a short-form of the Berg Card Sorting TestPloS One8514Search in Google Scholar
Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S., & Nagle, H. T. (1990). A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering, 37(1), 85–98.FriesenG. M.JannettT. C.JadallahM. A.YatesS. L.QuintS.NagleH. T.1990A comparison of the noise sensitivity of nine QRS detection algorithmsIEEE Transactions on Biomedical Engineering3718598Search in Google Scholar
Fukunishi, M., Kurita, K., Yamamoto, S., & Tsumura, N. (2018). Video based measurement of heart rate and heart rate variability spectrogram from estimated hemoglobin information. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1405–1412.FukunishiM.KuritaK.YamamotoS.TsumuraN.2018Video based measurement of heart rate and heart rate variability spectrogram from estimated hemoglobin informationProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)14051412Search in Google Scholar
Gabella, G. (2012). Structure of the autonomic nervous system. Springer.GabellaG.2012Structure of the autonomic nervous systemSpringerSearch in Google Scholar
Garcia-Mancilla, J., & Gonzalez, V. M. (2015). Stress quantification using a wearable device for dail feedback to improve stress management. In X. Zheng, D. Zeng, H. Chen & L. S. (Eds.), Proc. International Conference on Smart Health (ICSH) (pp. 204–209). Springer, Cham.Garcia-MancillaJ.GonzalezV. M.2015Stress quantification using a wearable device for dail feedback to improve stress managementInZhengX.ZengD.ChenH.L. S. (Eds.),Proc. International Conference on Smart Health (ICSH)204209SpringerChamSearch in Google Scholar
Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats. Journal of Neuroscience, 34(19), 6573–6582.GarfinkelS. N.MinatiL.GrayM. A.SethA. K.DolanR. J.CritchleyH. D.2014Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeatsJournal of Neuroscience341965736582Search in Google Scholar
Ghiasi, S., Greco, A., & Barbieri, R. e. a. (2020). Assessing Autonomic Function from Electrodermal Activity and Heart Rate Variability During Cold-Pressor Test and Emotional Challenge. Sci Rep, 10(5406), 1–13.GhiasiS.GrecoA.BarbieriR. e. a.2020Assessing Autonomic Function from Electrodermal Activity and Heart Rate Variability During Cold-Pressor Test and Emotional ChallengeSci Rep105406113Search in Google Scholar
Goldberg, L. S., & Grandey, A. A. (2007). Display rules versus display autonomy: Emotion regulation, emotional exhaustion, and task performance in a call center simulation. Journal of Occupational Health Psychology, 12(3), 301–318.GoldbergL. S.GrandeyA. A.2007Display rules versus display autonomy: Emotion regulation, emotional exhaustion, and task performance in a call center simulationJournal of Occupational Health Psychology123301318Search in Google Scholar
Goldberger, J. J. (1999). Sympathovagal balance: how should we measure it? American Journal of Physiology-Heart and Circulatory Physiology, 276(4), H1273–H1280.GoldbergerJ. J.1999Sympathovagal balance: how should we measure it?American Journal of Physiology-Heart and Circulatory Physiology2764H1273H1280Search in Google Scholar
Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74(2), 263–285.GrossmanP.TaylorE. W.2007Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functionsBiological Psychology742263285Search in Google Scholar
Grossmann, I., Sahdra, B. K., & Ciarrochi, J. (2016). A heart and a mind: Self-distancing facilitates the association between heart rate variability, and wise reasoning. Frontiers in Behavioral Neuroscience, 10(68), 1–10.GrossmannI.SahdraB. K.CiarrochiJ.2016A heart and a mind: Self-distancing facilitates the association between heart rate variability, and wise reasoningFrontiers in Behavioral Neuroscience1068110Search in Google Scholar
Hautala, A. J., Kiviniemi, A. M., & Tulppo, M. P. (2009). Individual responses to aerobic exercise: The role of the autonomic nervous system. Neuroscience & Biobehavioral Reviews, 33(2), 107–115.HautalaA. J.KiviniemiA. M.TulppoM. P.2009Individual responses to aerobic exercise: The role of the autonomic nervous systemNeuroscience & Biobehavioral Reviews332107115Search in Google Scholar
He, J., Li, K., Liao, X., Zhang, P., & Jiang, N. (2019). Real-time detection of acute cognitive stress using a convolutional neural network from electrocardio graphic signal. IEEE Access, 7, 42710–42717.HeJ.LiK.LiaoX.ZhangP.JiangN.2019Real-time detection of acute cognitive stress using a convolutional neural network from electrocardio graphic signalIEEE Access74271042717Search in Google Scholar
He, R., Wang, K., & Li, Q. e. a. (2017). A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization. EURASIP J. Adv. Signal Process, 82, 1–14.HeR.WangK.LiQ. e. a.2017A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm OptimizationEURASIP J. Adv. Signal Process82114Search in Google Scholar
Healey, J. (2015). Physiological sensing of emotion. In R. A. Calvo, S. D’Mello, J. M. Gratch & A. Kappas (Eds.), The oxford handbook of affective computing (pp. 1–22). Oxford University Press.HealeyJ.2015Physiological sensing of emotionInCalvoR. A.D’MelloS.GratchJ. M.KappasA.(Eds.),The oxford handbook of affective computing122Oxford University PressSearch in Google Scholar
Hernández-Vicente, A., Hernando, D., Marín-Puyalto, J., Vicente-Rodríguez, G., Garatachea, N. Pueyo, E., & Bailón, R. (2021). Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups. Sensors (Basel), 29(3), 1–14.Hernández-VicenteA.HernandoD.Marín-PuyaltoJ.Vicente-RodríguezG.GaratacheaN.PueyoE.BailónR.2021Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level GroupsSensors (Basel)293114Search in Google Scholar
Hjortskov, N., Rissén, D., Blangsted, A. K., Fallentin, N., Lundberg, U., & Søgaard, K. (2004). The effect of mental stress on heart rate variability and blood pressure during computer work. European Journal of Applied Physiology, 92(1-2), 84–89.HjortskovN.RissénD.BlangstedA. K.FallentinN.LundbergU.SøgaardK.2004The effect of mental stress on heart rate variability and blood pressure during computer workEuropean Journal of Applied Physiology921-28489Search in Google Scholar
Holzman, J. B., & Bridgett, D. J. (2017). Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neuroscience & Biobehavioral Reviews, 74, 233–255.HolzmanJ. B.BridgettD. J.2017Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic reviewNeuroscience & Biobehavioral Reviews74233255Search in Google Scholar
Hong, S., Zhou, Y., Shang, J., Xiao, C., & Sun, J. (2020). Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Computers in Biology and Medicine, 122, 103801.HongS.ZhouY.ShangJ.XiaoC.SunJ.2020Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic reviewComputers in Biology and Medicine122103801Search in Google Scholar
Ishaque, S., Khan, N., & Krishnan, S. (2021). Trends in heart-rate variability signal analysis. Frontiers in Digital Health, 3, 13.IshaqueS.KhanN.KrishnanS.2021Trends in heart-rate variability signal analysisFrontiers in Digital Health313Search in Google Scholar
Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., & Wiederhold, B. K. (2005). ECG to identify individuals. Pattern recognition, 38(1), 133–142.IsraelS. A.IrvineJ. M.ChengA.WiederholdM. D.WiederholdB. K.2005ECG to identify individualsPattern recognition381133142Search in Google Scholar
Jatmiko, W., Ma’sum, M. A., Wisesa, H. A., & Sanabila, H. R. (2019). Developing smart Tele-ECG system for early detection and monitoring heart diseases based on ECG signal: progress and challenges. International Journal on Smart Sensing and Intelligent Systems, 12(1), 1–28.JatmikoW.Ma’sumM. A.WisesaH. A.SanabilaH. R.2019Developing smart Tele-ECG system for early detection and monitoring heart diseases based on ECG signal: progress and challengesInternational Journal on Smart Sensing and Intelligent Systems121128Search in Google Scholar
Jelinek, H. F., August, K. G., Imam, M. H., Khandoker, A. H., Koenig, A., & Riener, R. (2011). Cortical response to psycho-physiological changes in auto-adaptive robot assisted gait training. Proc. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 7409–7412.JelinekH. F.AugustK. G.ImamM. H.KhandokerA. H.KoenigA.RienerR.2011Cortical response to psycho-physiological changes in auto-adaptive robot assisted gait trainingProc. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)74097412Search in Google Scholar
Kang, S. J., Lee, S. Y., Cho, H. I., & Park, H. (2016). Ecg authentication system design based on signal analysis in mobile and wearable devices. IEEE Signal Processing Letters, 23(6), 805–808.KangS. J.LeeS. Y.ChoH. I.ParkH.2016Ecg authentication system design based on signal analysis in mobile and wearable devicesIEEE Signal Processing Letters236805808Search in Google Scholar
Keller, J., Bless, H., Blomann, F., & Kleinböhl, D. (2011). Physiological aspects of flow experiences: Skills-demand-compatibility effects on heart rate variability and salivary cortisol. Journal of Experimental Social Psychology, 47(4), 849–852.KellerJ.BlessH.BlomannF.KleinböhlD.2011Physiological aspects of flow experiences: Skills-demand-compatibility effects on heart rate variability and salivary cortisolJournal of Experimental Social Psychology474849852Search in Google Scholar
Kelsey, R. M., Soderlund, K., & Arthur, C. (2004). Cardiovascular reactivity and adaptation to recurrent psychological stress: Replication and extension. Psychophysiology, 41(6), 924–934.KelseyR. M.SoderlundK.ArthurC.2004Cardiovascular reactivity and adaptation to recurrent psychological stress: Replication and extensionPsychophysiology416924934Search in Google Scholar
Kofman, O., Meiran, N., Greenberg, E., Balas, M., & Cohen, H. (2006). Enhanced performance on executive functions associated with examination stress: Evidence from task-switching and Stroop paradigms. Cognition & Emotion, 20(5), 577–595.KofmanO.MeiranN.GreenbergE.BalasM.CohenH.2006Enhanced performance on executive functions associated with examination stress: Evidence from task-switching and Stroop paradigmsCognition & Emotion205577595Search in Google Scholar
Kontaxis, S., Orini, M., Gil, E., Posadas-de Miguel, M., Bernal, M. L., Aguiló, J., de la Camara, C., Laguna, P., & Bailón, R. (2018). Heart rate variability analysis guided by respiration in major depressive disorder. Proc. IEEE Computing in Cardiology Conference (CinC), 45, 1–4.KontaxisS.OriniM.GilE.Posadas-de MiguelM.BernalM. L.AguilóJ.de la CamaraC.LagunaP.BailónR.2018Heart rate variability analysis guided by respiration in major depressive disorderProc. IEEE Computing in Cardiology Conference (CinC)4514Search in Google Scholar
Koren, A., Jurčević, M., & Prasad, R. (2020). Comparison of data-driven models for cleaning ehealth sensor data: Use case on ecg signal. Wireless Pers Commun, 114.KorenA.JurčevićM.PrasadR.2020Comparison of data-driven models for cleaning ehealth sensor data: Use case on ecg signalWireless Pers Commun114Search in Google Scholar
Laborde, S., Mosley, E., & Mertgen, A. (2018). Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning - Resting, Reactivity, and Recovery. Front Neurosci., 12, 1–14.LabordeS.MosleyE.MertgenA.2018Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning - Resting, Reactivity, and RecoveryFront Neurosci12114Search in Google Scholar
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Frontiers in Psychology, 8, 213.LabordeS.MosleyE.ThayerJ. F.2017Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – Recommendations for Experiment Planning, Data Analysis, and Data ReportingFrontiers in Psychology8213Search in Google Scholar
Lackner, H. K., Papousek, I., Batzel, J. J., Roessler, A., Scharfetter, H., & Hinghofer-Szalkay, H. (2011). Phase synchronization of hemodynamic variables and respiration during mental challenge. International Journal of Psychophysiology, 79(3), 401–409.LacknerH. K.PapousekI.BatzelJ. J.RoesslerA.ScharfetterH.Hinghofer-SzalkayH.2011Phase synchronization of hemodynamic variables and respiration during mental challengeInternational Journal of Psychophysiology793401409Search in Google Scholar
Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & Fox, P. T. (2005). A comparison of label-based review and ALE meta-analysis in the Stroop task. Human Brain Mapping, 25(1), 6–21.LairdA. R.McMillanK. M.LancasterJ. L.KochunovP.TurkeltaubP. E.PardoJ. V.FoxP. T.2005A comparison of label-based review and ALE meta-analysis in the Stroop taskHuman Brain Mapping251621Search in Google Scholar
Lassoued, H., Ketata, R., & Yacoub, S. (2018). ECG decision support system based on feedforward neural networks. International Journal on Smart Sensing and Intelligent Systems, 11(1), 1–15.LassouedH.KetataR.YacoubS.2018ECG decision support system based on feedforward neural networksInternational Journal on Smart Sensing and Intelligent Systems111115Search in Google Scholar
Lastre-Domínguez, C., Shmaliy, Y. S., Ibarra-Manzano, O., Munoz-Minjarez, J., & Vazquez-Olguin, M. (2018). Fiducial features extraction for ecg signals using state-space unbiased fir smoothing. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 1–6.Lastre-DomínguezC.ShmaliyY. S.Ibarra-ManzanoO.Munoz-MinjarezJ.Vazquez-OlguinM.2018Fiducial features extraction for ecg signals using state-space unbiased fir smoothing2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)16Search in Google Scholar
Lee WK, P. K., Yoon H. (2016). Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis. Ann Biomed Eng, 74(7), 2292–2301.LeeWKP.K.YoonH.2016Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV AnalysisAnn Biomed Eng74722922301Search in Google Scholar
Lehrer, P., Vaschillo, E., Lu, S. E., Eckberg, D., Vaschillo, B., Scardella, A., & Habib, R. (2006). Heart rate variability biofeedback: Effects of age on heart rate variability, baroreflex gain, and asthma. Chest, 129(2), 278–284.LehrerP.VaschilloE.LuS. E.EckbergD.VaschilloB.ScardellaA.HabibR.2006Heart rate variability biofeedback: Effects of age on heart rate variability, baroreflex gain, and asthmaChest1292278284Search in Google Scholar
Li, Z., Snieder, H., Su, S., Ding, X., Thayer, J. F., Treiber, F. A., & Wang, X. (2009). A longitudinal study in youth of heart rate variability at rest and in response to stress. International Journal of Psychophysiology, 73(3), 212–217.LiZ.SniederH.SuS.DingX.ThayerJ. F.TreiberF. A.WangX.2009A longitudinal study in youth of heart rate variability at rest and in response to stressInternational Journal of Psychophysiology733212217Search in Google Scholar
Liu, D., & Ulrich, M. (2014). Listen to your heart: Stress prediction using consumer heart rate sensors (tech. rep. CS 229: Machine Learning) [[Online]. Available: http://cs229.stanford.edu/proj2013/LiuUlrich-ListenToYourHeartStressPredictionUsingConsumerHeartRateSensors.pdf]. Computer Science Department, Stanford University. Stanford, CA, USA.LiuD.UlrichM.2014Listen to your heart: Stress prediction using consumer heart rate sensors (tech. rep. CS 229: Machine Learning) [[Online]Available: http://cs229.stanford.edu/proj2013/LiuUlrich-ListenToYourHeartStressPredictionUsingConsumerHeartRateSensors.pdf].Computer Science Department, Stanford UniversityStanford, CA, USASearch in Google Scholar
Lombardi, F., & Stein, P. K. (2011). Origin of heart rate variability and turbulence: An appraisal of autonomic modulation of cardiovascular function. Frontiers in Physiology, 2(95), 1–7.LombardiF.SteinP. K.2011Origin of heart rate variability and turbulence: An appraisal of autonomic modulation of cardiovascular functionFrontiers in Physiology29517Search in Google Scholar
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381.MalikM.BiggerJ. T.CammA. J.KleigerR. E.MallianiA.MossA. J.SchwartzP. J.1996Heart rate variability: Standards of measurement, physiological interpretation, and clinical useEuropean Heart Journal173354381Search in Google Scholar
Marques, A. H., Silverman, M. N., & Sternberg, E. (2010). Evaluation of stress systems by applying noninvasive methodologies: Measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol. Neuroimmunomodulation, 17(3), 205–208.MarquesA. H.SilvermanM. N.SternbergE.2010Evaluation of stress systems by applying noninvasive methodologies: Measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisolNeuroimmunomodulation173205208Search in Google Scholar
Mason, O., Lynch, K., Rashid, M., Reid, A., Elashoff, R., & Victor, R. (2018). Systolic Blood Pressure as a Novel Determinant of Nocturia in Non-Hispanic Black Men. Journal of the American Society of Hypertension: JASH, 134.MasonO.LynchK.RashidM.ReidA.ElashoffR.VictorR.2018Systolic Blood Pressure as a Novel Determinant of Nocturia in Non-Hispanic Black MenJournal of the American Society of Hypertension: JASH134Search in Google Scholar
Masood, K., & Alghamdi, M. A. (2019). Modeling mental stress using a deep learning framework. IEEE Access, 7, 68446–68454.MasoodK.AlghamdiM. A.2019Modeling mental stress using a deep learning frameworkIEEE Access76844668454Search in Google Scholar
McDuff, D., Gontarek, S., & Picard, R. (2014). Remote measurement of cognitive stress via heart rate variability. Proc. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 2957–2960.McDuffD.GontarekS.PicardR.2014Remote measurement of cognitive stress via heart rate variabilityProc. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)29572960Search in Google Scholar
Melillo, P., Bracale, M., & Pecchia, L. (2011). Nonlinear heart rate variability features for real-life stress detection. Case study: students under stress due to university examination. Biomedical Engineering Online, 10(1), 1–13.MelilloP.BracaleM.PecchiaL.2011Nonlinear heart rate variability features for real-life stress detection. Case study: students under stress due to university examinationBiomedical Engineering Online101113Search in Google Scholar
Melillo, P., De Luca, N., Bracale, M., & Pecchia, L. (2013). Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability. IEEE Journal of Biomedical and Health Informatics, 17(3), 727–733.MelilloP.De LucaN.BracaleM.PecchiaL.2013Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variabilityIEEE Journal of Biomedical and Health Informatics173727733Search in Google Scholar
Melillo, P., Izzo, R., De Luca, N., & Pecchia, L. (2012). Heart rate variability and target organ damage in hypertensive patients. BMC Cardiovascular Disorders, 12(105), 1–11.MelilloP.IzzoR.De LucaN.PecchiaL.2012Heart rate variability and target organ damage in hypertensive patientsBMC Cardiovascular Disorders12105111Search in Google Scholar
Merri, M., Farden, D. C., Mottley, J. G., & Titlebaum, E. L. (1990). Sampling frequency of the electrocardiogram for spectral analysis of the heart rate variability. IEEE Transactions on Biomedical Engineering, 37(1), 99–106.MerriM.FardenD. C.MottleyJ. G.TitlebaumE. L.1990Sampling frequency of the electrocardiogram for spectral analysis of the heart rate variabilityIEEE Transactions on Biomedical Engineering37199106Search in Google Scholar
Mourtakos, S., Vasiliou, G., Papageorgiou, C., Konotangelos, K., Philippou, A., Bersimis, F., Geladas, N., Koutsilieris, M., Sidossis, L., Tsirmpas, C., & Papageorgiou, C. (2021). Resilience of the hellenic navy SEALs assessed by heart rate variability during cognitve tasks. European Heart Journal, 42(Supplement_1).MourtakosS.VasiliouG.PapageorgiouC.KonotangelosK.PhilippouA.BersimisF.GeladasN.KoutsilierisM.SidossisL.TsirmpasC.PapageorgiouC.2021Resilience of the hellenic navy SEALs assessed by heart rate variability during cognitve tasksEuropean Heart Journal42Supplement_1Search in Google Scholar
Mporas, I., Tsirka, V., Zacharaki, E. I., Koutroumanidis, M., Richardson, M., & Megalooikonomou, V. (2015). Seizure detection using eeg and ecg signals for computer-based monitoring, analysis and management of epileptic patients. Expert Systems with Applications, 42(6), 3227–3233.MporasI.TsirkaV.ZacharakiE. I.KoutroumanidisM.RichardsonM.MegalooikonomouV.2015Seizure detection using eeg and ecg signals for computer-based monitoring, analysis and management of epileptic patientsExpert Systems with Applications42632273233Search in Google Scholar
Ni, A., Azarang, A., & Kehtarnavaz, N. (2021). A review of deep learning-based contactless heart rate measurement methods. Sensors, 21(11).NiA.AzarangA.KehtarnavazN.2021A review of deep learning-based contactless heart rate measurement methodsSensors2111Search in Google Scholar
Niskanen, J. P., Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2004). Software for advanced HRV analysis. Computer Methods and Programs in Biomedicine, 76(1), 73–81.NiskanenJ. P.TarvainenM. P.Ranta-AhoP. O.KarjalainenP. A.2004Software for advanced HRV analysisComputer Methods and Programs in Biomedicine7617381Search in Google Scholar
Nunan, D., Sandercock, G. R., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing and Clinical Electrophysiology, 33(11), 1407–1417.NunanD.SandercockG. R.BrodieD. A.2010A quantitative systematic review of normal values for short-term heart rate variability in healthy adultsPacing and Clinical Electrophysiology331114071417Search in Google Scholar
Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230–236.PanJ.TompkinsW. J.1985A real-time QRS detection algorithmIEEE Transactions on Biomedical EngineeringBME-323230236Search in Google Scholar
Pan, R. L. C., & Li, J. K. J. (2007). A noninvasive parametric evaluation of stress effects on global cardiovascular function. Cardiovascular Engineering, 7(2), 74–80.PanR. L. C.LiJ. K. J.2007A noninvasive parametric evaluation of stress effects on global cardiovascular functionCardiovascular Engineering727480Search in Google Scholar
Papousek, I., Nauschnegg, K., Paechter, M., Lackner, H. K., Goswami, N., & Schulter, G. (2010). Trait and state positive affect and cardiovascular recovery from experimental academic stress. Biological Psychology, 83(2), 108–115.PapousekI.NauschneggK.PaechterM.LacknerH. K.GoswamiN.SchulterG.2010Trait and state positive affect and cardiovascular recovery from experimental academic stressBiological Psychology832108115Search in Google Scholar
Pope, J. H., Aufderheide, T. P., Ruthazer, R., Woolard, R. H., Feldman, J. A., Beshansky, J. R., Griffith, J. L., & Selker, H. P. (2000). Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med., 342(16), 1163–1170.PopeJ. H.AufderheideT. P.RuthazerR.WoolardR. H.FeldmanJ. A.BeshanskyJ. R.GriffithJ. L.SelkerH. P.2000Missed diagnoses of acute cardiac ischemia in the emergency departmentN Engl J Med3421611631170Search in Google Scholar
Pykett, J., Chrisinger, B., Kyriakou, K., Osborne, T., Resch, B., Stathi, A., Toth, E., & Whittaker, A. C. (2020). Developing a Citizen Social Science approach to understand urban stress and promote wellbeing in urban communities. Palgrave Commun, 6(85), 1–11.PykettJ.ChrisingerB.KyriakouK.OsborneT.ReschB.StathiA.TothE.WhittakerA. C.2020Developing a Citizen Social Science approach to understand urban stress and promote wellbeing in urban communitiesPalgrave Commun685111Search in Google Scholar
Quintana, D. S., & Heathers, J. A. (2014). Considerations in the assessment of heart rate variability in biobehavioral research. Frontiers in Psychology, 5(805), 1–10.QuintanaD. S.HeathersJ. A.2014Considerations in the assessment of heart rate variability in biobehavioral researchFrontiers in Psychology5805110Search in Google Scholar
Raaijmakers, S. F., Steel, F. W., de Goede, M., van Wouwe, N. C., van Erp, J. B., & Brouwer, A. M. (2013). Heart rate variability and skin conductance biofeedback: A triple-blind randomized controlled study. Proc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction, 289–293.RaaijmakersS. F.SteelF. W.de GoedeM.van WouweN. C.van ErpJ. B.BrouwerA. M.2013Heart rate variability and skin conductance biofeedback: A triple-blind randomized controlled studyProc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction289293Search in Google Scholar
Rachakonda, L., Mohanty, S. P., & Kougianos, E. (2020). Ifeliz: An approach to control stress in the midst of the global pandemic and beyond for smart cities using the iomt. 2020 IEEE International Smart Cities Conference (ISC2), 1–7.RachakondaL.MohantyS. P.KougianosE.2020Ifeliz: An approach to control stress in the midst of the global pandemic and beyond for smart cities using the iomt2020 IEEE International Smart Cities Conference (ISC2)17Search in Google Scholar
Ribeiro, R. T., & Cunha, J. P. S. (2018). A regression approach based on separability maximization for modeling a continuous-valued stress index from electrocardiogram data. Biomedical Signal Processing and Control, 46, 33–45.RibeiroR. T.CunhaJ. P. S.2018A regression approach based on separability maximization for modeling a continuous-valued stress index from electrocardiogram dataBiomedical Signal Processing and Control463345Search in Google Scholar
Rudovic, Ognjen and Lee, Jaeryoung and Dai, Miles and Schuller, Björn and Picard, Rosalind W. (2018). Personalized machine learning for robot perception of affect and engagement in autism therapy. Science Robotics, 3(19).RudovicOgnjenLeeJaeryoungDaiMilesSchullerBjörnPicardRosalind W.2018Personalized machine learning for robot perception of affect and engagement in autism therapyScience Robotics319Search in Google Scholar
Saini, S. K., & Gupta, R. (2019). A review on ecg signal analysis for mental stress assessment. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), 915–918.SainiS. K.GuptaR.2019A review on ecg signal analysis for mental stress assessment2019 6th International Conference on Computing for Sustainable Global Development (INDIACom)915918Search in Google Scholar
Salahuddin, L., Cho, J., Jeong, M. G., & Kim, D. (2007). Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Proc. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 4656–4659.SalahuddinL.ChoJ.JeongM. G.KimD.2007Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settingsProc. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)46564659Search in Google Scholar
Sano, A., & Picard, R. W. (2013). Stress recognition using wearable sensors and mobile phones. Proc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction, 671–676.SanoA.PicardR. W.2013Stress recognition using wearable sensors and mobile phonesProc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction671676Search in Google Scholar
Satya, A. P. (2009). Effects of physical and mental tasks on heart rate variability (Master’s thesis) [Online]. Available: https://digitalcommons.lsu.edu/gradschool_theses/3928/]. Department of Construction Management & Industrial Engineering, Louisiana State University. Baton Rouge, LA 70803, USA.SatyaA. P.2009Effects of physical and mental tasks on heart rate variability (Master’s thesis) [Online]Available: https://digitalcommons.lsu.edu/gradschool_theses/3928/].Department of Construction Management & Industrial Engineering, Louisiana State UniversityBaton Rouge, LA 70803, USASearch in Google Scholar
Saxena, S. C., Kumar, V., & Hamde, S. T. (2002). Feature extraction from ECG signals using wavelet transform for disease diagnostics. International Journal of Systems Science, 33(13), 1073–1085.SaxenaS. C.KumarV.HamdeS. T.2002Feature extraction from ECG signals using wavelet transform for disease diagnosticsInternational Journal of Systems Science331310731085Search in Google Scholar
Schubert, C., Lambertz, M., Nelesen, R. A., Bardwell, W., Choi, J. B., & Dimsdale, J. E. (2009). Effects of stress on heart rate complexity — A comparison between short-term and chronic stress. Biological Psychology, 80(3), 325–332.SchubertC.LambertzM.NelesenR. A.BardwellW.ChoiJ. B.DimsdaleJ. E.2009Effects of stress on heart rate complexity — A comparison between short-term and chronic stressBiological Psychology803325332Search in Google Scholar
Sieciński, S., & Kostka, P. (2019). Influence of music on HRV indices derived from ECG and SCG [Online]. Available: http://dx.doi.org/10.13140/RG.2.2.30593.20329].SiecińskiS.KostkaP.2019Influence of music on HRV indices derived from ECG and SCG [Online]Available: http://dx.doi.org/10.13140/RG.2.2.30593.20329].Search in Google Scholar
Siegel, N. S., & Castellan, Jr., J. (1988). Non parametric statistics for the behavioral sciences (2nd). McGraw-Hill.SiegelN. S.CastellanJ.Jr.1988Non parametric statistics for the behavioral sciences2ndMcGraw-HillSearch in Google Scholar
Singh, R. R., Conjeti, S., & Banerjee, R. (2013). A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals. Biomedical Signal Processing and Control, 8(6), 740–754.SinghR. R.ConjetiS.BanerjeeR.2013A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signalsBiomedical Signal Processing and Control86740754Search in Google Scholar
Sinha, A., Das, P., Gavas, R., Chatterjee, D., & Saha, S. K. (2016). Physiological sensing based stress analysis during assessment. Proc. IEEE Frontiers in Education Conference (FIE), 1–8.SinhaA.DasP.GavasR.ChatterjeeD.SahaS. K.2016Physiological sensing based stress analysis during assessmentProc. IEEE Frontiers in Education Conference (FIE)18Search in Google Scholar
Sinha, A., Gavas, R., Chatterjee, D., Das, R., & Sinharay, A. (2015). Dynamic assessment of learners’ mental state for an improved learning experience. Proc. IEEE Frontiers in Education Conference (FIE), 1–9.SinhaA.GavasR.ChatterjeeD.DasR.SinharayA.2015Dynamic assessment of learners’ mental state for an improved learning experienceProc. IEEE Frontiers in Education Conference (FIE)19Search in Google Scholar
Soekadar, S. R., Witkowski, M., Gómez, C., Opisso, E., Medina, J., Cortese, M., Cempini, M., Carrozza, M. C., Cohen, L. G., Birbaumer, N., & Vitiello, N. (2016). Hybrid EEG/EOG-base brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. 1(1).SoekadarS. R.WitkowskiM.GómezC.OpissoE.MedinaJ.CorteseM.CempiniM.CarrozzaM. C.CohenL. G.BirbaumerN.VitielloN.2016Hybrid EEG/EOG-base brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia11Search in Google Scholar
Sutton, A. J., Abrams, K. R., Jones, D. R., Jones, D. R., Sheldon, T. A., & Song, F. (2000). Methods for meta-analysis in medical research. John Wiley.SuttonA. J.AbramsK. R.JonesD. R.JonesD. R.SheldonT. A.SongF.2000Methods for meta-analysis in medical researchJohn WileySearch in Google Scholar
Tabar, Y. R., & Halici, U. (2016). A novel deep learning approach for classification of EEG motor imagery signals. Journal of Neural Engineering, 14(1), 1–11.TabarY. R.HaliciU.2016A novel deep learning approach for classification of EEG motor imagery signalsJournal of Neural Engineering141111Search in Google Scholar
Taelman, J., Vandeput, S., Vlemincx, E., Spaepen, A., & Van Huffel, S. (2011). Instantaneous changes in heart rate regulation due to mental load in simulated office work. European Journal of Applied Physiology, 111(7), 1497–1505.TaelmanJ.VandeputS.VlemincxE.SpaepenA.Van HuffelS.2011Instantaneous changes in heart rate regulation due to mental load in simulated office workEuropean Journal of Applied Physiology111714971505Search in Google Scholar
Takakura, I. T., Hoshi, R. A., Santos, M. A., Pivatelli, F. C., Nóbrega, J. H., Guedes, D. L. Nogueira, V. F., Frota, T. Q., Castelo, G. C., & Godoy, M. F. (2017). Recurrence Plots: a New Tool for Quantification of Cardiac Autonomic Nervous System Recovery after Transplant. Braz J Cardiovasc Surg., 32(4), 245–252.TakakuraI. T.HoshiR. A.SantosM. A.PivatelliF. C.NóbregaJ. H.GuedesD. L.NogueiraV. F.FrotaT. Q.CasteloG. C.GodoyM. F.2017Recurrence Plots: a New Tool for Quantification of Cardiac Autonomic Nervous System Recovery after TransplantBraz J Cardiovasc Surg324245252Search in Google Scholar
Tharion, E., Parthasarathy, S., & Neelakantan, N. (2009). Short-term heart rate variability measures in students during examinations. The National Medical Journal of India, 22(2), 63–66.TharionE.ParthasarathyS.NeelakantanN.2009Short-term heart rate variability measures in students during examinationsThe National Medical Journal of India2226366Search in Google Scholar
Thayer, J. F., Åhs, F., Fredrikson, M., Sollers III, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756.ThayerJ. F.ÅhsF.FredriksonM.SollersJ. J.IIIWagerT. D.2012A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and healthNeuroscience & Biobehavioral Reviews362747756Search in Google Scholar
Timothy, V., Prihatmanto, A. S., & Rhee, K. H. (2016). R-to-R extraction and preprocessing procedure for an automated diagnosis of various diseases from ECG data. Journal of Multimedia and Information System, 3(2), 1–8.TimothyV.PrihatmantoA. S.RheeK. H.2016R-to-R extraction and preprocessing procedure for an automated diagnosis of various diseases from ECG dataJournal of Multimedia and Information System3218Search in Google Scholar
Traina, M., Cataldo, A., Galullo, F., & Russo, G. (2011). Effect of anxiety due to mental stress on heart rate variability in healthy subjects. Minerva Psichiatrica, 52(4), 227–231.TrainaM.CataldoA.GalulloF.RussoG.2011Effect of anxiety due to mental stress on heart rate variability in healthy subjectsMinerva Psichiatrica524227231Search in Google Scholar
Visnovcova, Z., Mestanik, M., Javorka, M., Mokra, D., Gala, M., Jurko, A., Calkovska, A., & Tonhajzerova, I. (2014). Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiological Measurement, 35(7), 1319–1334.VisnovcovaZ.MestanikM.JavorkaM.MokraD.GalaM.JurkoA.CalkovskaA.TonhajzerovaI.2014Complexity and time asymmetry of heart rate variability are altered in acute mental stressPhysiological Measurement35713191334Search in Google Scholar
Vuksanović V, G. V. (2007). Heart rate variability in mental stress aloud. Med Eng Phys., 29(3), 344–349. https://doi.org/10.1016/j.medengphy.2006.05.011VuksanovićVG.V.2007Heart rate variability in mental stress aloudMed Eng Phys293344349https://doi.org/10.1016/j.medengphy.2006.05.011Search in Google Scholar
Wu, W., Pirbhulal, S., Zhang, H., & Mukhopadhyay, S. C. (2019). Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor system. IEEE Journal of Biomedical and Health Informatics, 23(2), 703–713.WuW.PirbhulalS.ZhangH.MukhopadhyayS. C.2019Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor systemIEEE Journal of Biomedical and Health Informatics232703713Search in Google Scholar
Ye, C., Vijaya Kumar, B. V. K., & Coimbra, M. T. (2012). Heartbeat classification using morphological and dynamic features of ecg signals. IEEE Transactions on Biomedical Engineering, 59(10), 2930–2941.YeC.Vijaya KumarB. V. K.CoimbraM. T.2012Heartbeat classification using morphological and dynamic features of ecg signalsIEEE Transactions on Biomedical Engineering591029302941Search in Google Scholar
Yu, X., & Zhang, J. (2012). Estimating the cortex and autonomic nervous activity during a mental arithmetic task. Biomedical Signal Processing and Control, 7(3), 303–308.YuX.ZhangJ.2012Estimating the cortex and autonomic nervous activity during a mental arithmetic taskBiomedical Signal Processing and Control73303308Search in Google Scholar
Zandbelt, B. B., Gladwin, T. E., Raemaekers, M., van Buuren, M., Neggers, S. F., Kahn, R. S., Ramsey, N. F., & Vink, M. (2008). Within-subject variation in BOLD-fMRI signal changes across repeated measurements: Quantification and implications for sample size. Neuroimage, 42(1), 196–206.ZandbeltB. B.GladwinT. E.RaemaekersM.van BuurenM.NeggersS. F.KahnR. S.RamseyN. F.VinkM.2008Within-subject variation in BOLD-fMRI signal changes across repeated measurements: Quantification and implications for sample sizeNeuroimage421196206Search in Google Scholar