Open Access

Quantifying neurophysiological mechanism through heart rate variability: the case of cognitive stress

,  and   
Jun 23, 2025

Cite
Download Cover

Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: A review. Medical and Biological Engineering and Computing, 44(12), 1031–1051. AcharyaU. R. JosephK. P. KannathalN. LimC. M. SuriJ. S. 2006 Heart rate variability: A review Medical and Biological Engineering and Computing 44 12 1031 1051 Search in Google Scholar

Aditya Pramanta, S. P. L., Prihatmanto, A. S., & Park, M. G. (2016). A study on the stress identification using observed heart beat data. Proc. 6th International Conference on System Engineering and Technology (ICSET), 149–152. Aditya PramantaS. P. L. PrihatmantoA. S. ParkM. G. 2016 A study on the stress identification using observed heart beat data Proc. 6th International Conference on System Engineering and Technology (ICSET) 149 152 Search in Google Scholar

Adler, N., Stewart, J., Cohen, S., Cullen, M., Roux, A. D., Dow, W., Evans, J., Kawachi, I., Marmot, M., Matthews, K., McEwen, B., Schwartz, J., Seeman, T., & Williams, D. (2007). Reaching for a healthier life: Facts on socioeconomic status and health in the US (tech. rep.) [Online]. Available: https://macses.ucsf.edu/downloads/Reaching_for_a_Healthier_Life.pdf]. The John D. and Catherine T. MacArthur Foundation Research Network on Socioeconomic Status and Health. San Francisco, CA, USA. AdlerN. StewartJ. CohenS. CullenM. RouxA. D. DowW. EvansJ. KawachiI. MarmotM. MatthewsK. McEwenB. SchwartzJ. SeemanT. WilliamsD. 2007 Reaching for a healthier life: Facts on socioeconomic status and health in the US (tech. rep.) [Online] Available: https://macses.ucsf.edu/downloads/Reaching_for_a_Healthier_Life.pdf]. The John D. and Catherine T. MacArthur Foundation Research Network on Socioeconomic Status and Health San Francisco, CA, USA Search in Google Scholar

Afonso, V. X. (1993). ECG QRS detection. In W. J. Tompkins (Ed.), Biomedical digital signal processing: C-language examples and laboratory experiments for the IBM pc (pp. 236–264). Prentice-Hall. AfonsoV. X. 1993 ECG QRS detection In TompkinsW. J. (Ed.), Biomedical digital signal processing: C-language examples and laboratory experiments for the IBM pc 236 264 Prentice-Hall Search in Google Scholar

Ahlstrom, M. L., & J., T. W. (1985). Digital filters for real-time ECG signal processing using microprocessors. IEEE Transactions on Biomedical Engineering, BME-32(9), 708–713. AhlstromM. L. T.W. J. 1985 Digital filters for real-time ECG signal processing using microprocessors IEEE Transactions on Biomedical Engineering BME- 32 9 708 713 Search in Google Scholar

Akay, M. (2012). Biomedical signal processing. Academic Press. AkayM. 2012 Biomedical signal processing Academic Press Search in Google Scholar

Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220–222. AkselrodS. GordonD. UbelF. A. ShannonD. C. BergerA. C. CohenR. J. 1981 Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control Science 213 4504 220 222 Search in Google Scholar

Al-Hazimi, A., Al-Ama, N., Syiamic, A., Qosti, R., & Abdel-Galil, K. (2002). Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy. Annals of Saudi Medicine, 22(5-6), 400–403. Al-HazimiA. Al-AmaN. SyiamicA. QostiR. Abdel-GalilK. 2002 Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy Annals of Saudi Medicine 22 5-6 400 403 Search in Google Scholar

Alhussainy, A. M. H. (2020). QRS complex detection and R–R interval computation based on discrete wavelet transform. International journal on smart sensing and intelligent systems, 13(1), 1–11. AlhussainyA. M. H. 2020 QRS complex detection and R–R interval computation based on discrete wavelet transform International journal on smart sensing and intelligent systems 13 1 1 11 Search in Google Scholar

Arzeno, N. M., Poon, C. S., & Deng, Z. D. (2006). Quantitative analysis of QRS detection algorithms based on first derivative of the ECG. Proc. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 1788–1791. ArzenoN. M. PoonC. S. DengZ. D. 2006 Quantitative analysis of QRS detection algorithms based on first derivative of the ECG Proc. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) 1788 1791 Search in Google Scholar

Badre, D. (2021). Tips from neuroscience to keep you focused on hard tasks. Nature. BadreD. 2021 Tips from neuroscience to keep you focused on hard tasks Nature Search in Google Scholar

Balda, R. A., Diller, G., Deardorff, E., Doue, J., & Hsieh, P. (1977). The HPECG analysis program. In J. H. van Bemmel & J. L. Willems (Eds.), Proceedings of the ifip working conference trends in computer processed electrocardiograms (pp. 197–204). North-Holland Publishing Company. BaldaR. A. DillerG. DeardorffE. DoueJ. HsiehP. 1977 The HPECG analysis program In van BemmelJ. H. WillemsJ. L. (Eds.), Proceedings of the ifip working conference trends in computer processed electrocardiograms 197 204 North-Holland Publishing Company Search in Google Scholar

Bando, S., Nozawa, A., & Matsuya, Y. (2015). Multidimensional directed coherence analysis of keystroke dynamics and physiological responses. Proc. IEEE International Conference on Noise and Fluctuations (ICNF), 1–4. BandoS. NozawaA. MatsuyaY. 2015 Multidimensional directed coherence analysis of keystroke dynamics and physiological responses Proc. IEEE International Conference on Noise and Fluctuations (ICNF) 1 4 Search in Google Scholar

Bansal, D., Khan, M., & Salhan, A. K. (2007). An ECG monitoring system having simple interface with computer capable of real time data transfer. Proc. International Conference on Engineering the future of Biology & Medicine, 1–7. BansalD. KhanM. SalhanA. K. 2007 An ECG monitoring system having simple interface with computer capable of real time data transfer Proc. International Conference on Engineering the future of Biology & Medicine 1 7 Search in Google Scholar

Barreto, A., Zhai, J., & Adjouadi, M. (2007). Non-intrusive physiological monitoring for automated stress detection in human-computer interaction. In M. Lew, N. Sebe, T. S. Huang & E. M. Bakker (Eds.), Proc. International Workshop on Human-Computer Interaction (HCI) (pp. 29–38). Springer. BarretoA. ZhaiJ. AdjouadiM. 2007 Non-intrusive physiological monitoring for automated stress detection in human-computer interaction In LewM. SebeN. HuangT. S. BakkerE. M. (Eds.), Proc. International Workshop on Human-Computer Interaction (HCI) 29 38 Springer Search in Google Scholar

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90–101. BehzadiY. RestomK. LiauJ. LiuT. T. 2007 A component based noise correction method (CompCor) for BOLD and perfusion based fMRI Neuroimage 37 1 90 101 Search in Google Scholar

Betti, S., Lova, R. M., Rovini, E., Acerbi, G., Santarelli, L., Cabiati, M., Ry, S. D., & Cavallo, F. (2018). Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Transactions on Biomedical Engineering, 65(8), 1748–1758. BettiS. LovaR. M. RoviniE. AcerbiG. SantarelliL. CabiatiM. RyS. D. CavalloF. 2018 Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers IEEE Transactions on Biomedical Engineering 65 8 1748 1758 Search in Google Scholar

Beyramienanlou, H., & Lotfivand, N. (2017). Shannon’s energy based algorithm in ECG signal processing. Computational and Mathematical Methods in Medicine, 2017, 1–16. BeyramienanlouH. LotfivandN. 2017 Shannon’s energy based algorithm in ECG signal processing Computational and Mathematical Methods in Medicine 2017 1 16 Search in Google Scholar

Bhattacharyya, P. K., & Lowe, M. J. (2004). Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations. Magnetic Resonance Imaging, 22(1), 9–13. BhattacharyyaP. K. LoweM. J. 2004 Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations Magnetic Resonance Imaging 22 1 9 13 Search in Google Scholar

Billman, G. E., Huikuri, H. V., Sacha, J., & Trimmel, K. (2015). An introduction to heart rate variability: Methodological considerations and clinical applications. Frontiers in Physiology, 6(55), 1–3. BillmanG. E. HuikuriH. V. SachaJ. TrimmelK. 2015 An introduction to heart rate variability: Methodological considerations and clinical applications Frontiers in Physiology 6 55 1 3 Search in Google Scholar

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. BishopC. M. 2006 Pattern recognition and machine learning Springer Search in Google Scholar

Bland, J. M., & Altman, D. G. (1996). Transformations, means, and confidence intervals. BMJ: British Medical Journal, 312(7038), 1079. BlandJ. M. AltmanD. G. 1996 Transformations, means, and confidence intervals BMJ: British Medical Journal 312 7038 1079 Search in Google Scholar

Blaug, R., Kenyon, A., & Lekhi, R. (2007). Stress at work: A report prepared for the work foundation’s principal partners (tech. rep. 2(2)) [[Online]. Available: https://westminsterresearch.westminster.ac.uk/item/91wvv/stress-at-work-a-report-preparedfor-thework-foundation-s-principal-partners]. The Work Foundation. London, UK. BlaugR. KenyonA. LekhiR. 2007 Stress at work: A report prepared for the work foundation’s principal partners (tech. rep. 2(2)) [[Online] Available: https://westminsterresearch.westminster.ac.uk/item/91wvv/stress-at-work-a-report-preparedfor-thework-foundation-s-principal-partners]. The Work Foundation London, UK Search in Google Scholar

Bousefsaf, F., Maaoui, C., & Pruski, A. (2013). Remote assessment of the heart rate variability to detect mental stress. Proc. 7th International Conference on Pervasive Computing Technologies for Healthcare, 348–351. BousefsafF. MaaouiC. PruskiA. 2013 Remote assessment of the heart rate variability to detect mental stress Proc. 7th International Conference on Pervasive Computing Technologies for Healthcare 348 351 Search in Google Scholar

Bracha, H. S. (2004). Freeze, flight, fight, fright, faint: Adaptationist perspectives on the acute stress response spectrum. CNS Spectrums, 9(9), 679–685. BrachaH. S. 2004 Freeze, flight, fight, fright, faint: Adaptationist perspectives on the acute stress response spectrum CNS Spectrums 9 9 679 685 Search in Google Scholar

Brouwer, A. M., Dijksterhuis, C., & van Erp, J. B. (2015). Physiological correlates of mental effort a manipulated through lane width during simulated driving. Proc. IEEE International Conference on Affective Computing and Intelligent Interaction (ACII), 42–48. BrouwerA. M. DijksterhuisC. van ErpJ. B. 2015 Physiological correlates of mental effort a manipulated through lane width during simulated driving Proc. IEEE International Conference on Affective Computing and Intelligent Interaction (ACII) 42 48 Search in Google Scholar

Brüser, C., Antink, C. H., Wartzek, T., Walter, M., & Leonhardt, S. (2015). Ambient and unobtrusive cardio respiratory monitoring techniques. IEEE Reviews in Biomedical Engineering, 8, 30–43. BrüserC. AntinkC. H. WartzekT. WalterM. LeonhardtS. 2015 Ambient and unobtrusive cardio respiratory monitoring techniques IEEE Reviews in Biomedical Engineering 8 30 43 Search in Google Scholar

Burg, J. M., Wolf, O. T., & Michalak, J. (2012). Mindfulness as self-regulated attention. Swiss Journal of Psychology, 71(3), 135–139. BurgJ. M. WolfO. T. MichalakJ. 2012 Mindfulness as self-regulated attention Swiss Journal of Psychology 71 3 135 139 Search in Google Scholar

Capdevila, L., Castro-Marrero, J., Alegre, J., Ramos-Castro, J., & Escorihuela, R. M. (2021). Analysis of gender differences in hrv of patients with myalgic encephalomyelitis/chronic fatigue syndrome using mobile-health technology. Sensors, 21(11). CapdevilaL. Castro-MarreroJ. AlegreJ. Ramos-CastroJ. EscorihuelaR. M. 2021 Analysis of gender differences in hrv of patients with myalgic encephalomyelitis/chronic fatigue syndrome using mobile-health technology Sensors 21 11 Search in Google Scholar

Capuana, L. J., Dywan, J., Tays, W. J., Elmers, J. L., Witherspoon, R., & Segalowitz, S. J. (2014). Factors influencing the role of cardiac autonomic regulation in the service of cognitive control. Biol Psychol, 120, 88–97. CapuanaL. J. DywanJ. TaysW. J. ElmersJ. L. WitherspoonR. SegalowitzS. J. 2014 Factors influencing the role of cardiac autonomic regulation in the service of cognitive control Biol Psychol 120 88 97 Search in Google Scholar

Casaleggio, A., Corana, A., & Ridella, S. (1995). Correlation dimension estimation from electrocardiograms. Chaos, Solitons & Fractals, 5(3-4), 713–726. CasaleggioA. CoranaA. RidellaS. 1995 Correlation dimension estimation from electrocardiograms Chaos, Solitons & Fractals 5 3-4 713 726 Search in Google Scholar

Castaldo, R., Melillo, P., Bracale, U., Caserta, M., Triassi, M., & Pecchia, L. (2015). Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomedical Signal Processing and Control, 18, 370–377. CastaldoR. MelilloP. BracaleU. CasertaM. TriassiM. PecchiaL. 2015 Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis Biomedical Signal Processing and Control 18 370 377 Search in Google Scholar

Castaldo, R., Xu, W., Melillo, P., Pecchia, L., Santamaria, L., & James, C. (2016). Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis. Proc. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 3805–3808. CastaldoR. XuW. MelilloP. PecchiaL. SantamariaL. JamesC. 2016 Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis Proc. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) 3805 3808 Search in Google Scholar

Catai, A. M., Pastre, C. M., Godoy, M. F., Silva, E. D., Takahashi, A. C. M., & Vanderlei, L. C. M. (2019). Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz J Phys Ther., 24(2), 91–102. CataiA. M. PastreC. M. GodoyM. F. SilvaE. D. TakahashiA. C. M. VanderleiL. C. M. 2019 Heart rate variability: are you using it properly? Standardisation checklist of procedures Braz J Phys Ther 24 2 91 102 Search in Google Scholar

Chalmers, J. A., Quintana, D. S., Abbott, M. J., & Kemp, A. H. (2014). Anxiety disorders are associated with reduced heart rate variability: A meta-analysis. Frontiers in Psychiatry, 5(80), 1–11. ChalmersJ. A. QuintanaD. S. AbbottM. J. KempA. H. 2014 Anxiety disorders are associated with reduced heart rate variability: A meta-analysis Frontiers in Psychiatry 5 80 1 11 Search in Google Scholar

Chandola, T., Heraclides, A., & Kumari, M. (2010). Psychophysiological biomarkers of workplace stressors. Neuroscience & Biobehavioral Reviews, 35(1), 51–57. ChandolaT. HeraclidesA. KumariM. 2010 Psychophysiological biomarkers of workplace stressors Neuroscience & Biobehavioral Reviews 35 1 51 57 Search in Google Scholar

Chen, C.-M., Anastasova, S., Zhang, K., Rosa, B. G., Lo, B. P. L., Assender, H. E., & Yang, G.-Z. (2020). Towards wearable and flexible sensors and circuits integration for stress monitoring. IEEE Journal of Biomedical and Health Informatics, 24(8), 2208–2215. ChenC.-M. AnastasovaS. ZhangK. RosaB. G. LoB. P. L. AssenderH. E. YangG.-Z. 2020 Towards wearable and flexible sensors and circuits integration for stress monitoring IEEE Journal of Biomedical and Health Informatics 24 8 2208 2215 Search in Google Scholar

Choi, H. A. (2017). Listening with your heart. Science Translational Medicine, 9(414). ChoiH. A. 2017 Listening with your heart Science Translational Medicine 9 414 Search in Google Scholar

Choi, J., & Gutierrez-Osuna, R. (2011). Removal of respiratory influences from heart rate variability in stress monitoring. IEEE Sensors Journal, 11(11), 2649–2656. ChoiJ. Gutierrez-OsunaR. 2011 Removal of respiratory influences from heart rate variability in stress monitoring IEEE Sensors Journal 11 11 2649 2656 Search in Google Scholar

Chon, K. H., Scully, C. G., & Lu, S. (2009). Approximate entropy for all signals. IEEE Engineering in Medicine and Biology Magazine, 28(6), 18–23. ChonK. H. ScullyC. G. LuS. 2009 Approximate entropy for all signals IEEE Engineering in Medicine and Biology Magazine 28 6 18 23 Search in Google Scholar

Cox, J. R., Nolle, F. M., Fozzard, H. A., & Oliver, G. C. (1968). Aztec, a preprocessing program for real-time ecg rhythm analysis. IEEE Transactions on Biomedical Engineering, BME-15(2), 128–129. CoxJ. R. NolleF. M. FozzardH. A. OliverG. C. 1968 Aztec, a preprocessing program for real-time ecg rhythm analysis IEEE Transactions on Biomedical Engineering BME- 15 2 128 129 Search in Google Scholar

Cropanzano, R. S., Massaro, S., & Becker, W. J. (2017). Deontic justice and organizational neuroscience. Journal of Business Ethics, 144(4), 733–754. CropanzanoR. S. MassaroS. BeckerW. J. 2017 Deontic justice and organizational neuroscience Journal of Business Ethics 144 4 733 754 Search in Google Scholar

Crowley, O. V., McKinley, P. S., Burg, M. M., Schwartz, J. E., Ryff, C. D., Weinstein, M., Seeman, T. E., & Sloan, R. P. (2011). The interactive effect of change in perceived stress and trait anxiety on vagal recovery from cognitive challenge. International Journal of Psychophysiology, 82(3), 225–232. CrowleyO. V. McKinleyP. S. BurgM. M. SchwartzJ. E. RyffC. D. WeinsteinM. SeemanT. E. SloanR. P. 2011 The interactive effect of change in perceived stress and trait anxiety on vagal recovery from cognitive challenge International Journal of Psychophysiology 82 3 225 232 Search in Google Scholar

Daskalov, I. K., & Christov, I. I. (1999). Electrocardiogram signal pre processing for automatic detection of QRS boundaries. Medical Engineering & Physics, 21(1), 37–44. DaskalovI. K. ChristovI. I. 1999 Electrocardiogram signal pre processing for automatic detection of QRS boundaries Medical Engineering & Physics 21 1 37 44 Search in Google Scholar

De Nadai, S., D’Incà, M., Parodi, F., Benza, M., Trotta, A., Zero, E., Zero, L., & Sacile, R. (2016). Enhancing safety of transport by road by on-line monitoring of driver emotions. Proc. IEEE 11th System of Systems Engineering Conference (SoSE), 1–4. De NadaiS. D’IncàM. ParodiF. BenzaM. TrottaA. ZeroE. ZeroL. SacileR. 2016 Enhancing safety of transport by road by on-line monitoring of driver emotions Proc. IEEE 11th System of Systems Engineering Conference (SoSE) 1 4 Search in Google Scholar

Delmastro, F., Martino, F. D., & Dolciotti, C. (2020). Cognitive training and stress detection in mci frail older people through wearable sensors and machine learning. IEEE Access, 8, 65573–65590. DelmastroF. MartinoF. D. DolciottiC. 2020 Cognitive training and stress detection in mci frail older people through wearable sensors and machine learning IEEE Access 8 65573 65590 Search in Google Scholar

Dobbs, S. E., Schmitt, N. M., & Ozemek, H. S. (1984). QRS detection by template matching using real-time correlation on a microcomputer. Journal of Clinical Engineering, 9(3), 197–212. DobbsS. E. SchmittN. M. OzemekH. S. 1984 QRS detection by template matching using real-time correlation on a microcomputer Journal of Clinical Engineering 9 3 197 212 Search in Google Scholar

Dossett, M. L., Fricchione, G. L., & Benson, H. (2020). A new era for mind–body medicine. New England Journal of Medicine, 382(15), 1390–1391. DossettM. L. FricchioneG. L. BensonH. 2020 A new era for mind–body medicine New England Journal of Medicine 382 15 1390 1391 Search in Google Scholar

Eckberg, D. L. (1983). Human sinus arrhythmia as an index of vagal cardiac outflow. Journal of Applied Physiology, 54(4), 961–966. EckbergD. L. 1983 Human sinus arrhythmia as an index of vagal cardiac outflow Journal of Applied Physiology 54 4 961 966 Search in Google Scholar

Elfenbein, H. A. (2017). Emotion in organizations: A review and theoretical integration. Academy of Management Annals, 1(1), 315–386. ElfenbeinH. A. 2017 Emotion in organizations: A review and theoretical integration Academy of Management Annals 1 1 315 386 Search in Google Scholar

Engert, V., Kok, B. E., Papassotiriou, I., Chrousos, G. P., & Singer, T. (2017). Specific reduction in cortisol stress reactivity after social but not attention-based mental training. Sci Adv., 3(10). EngertV. KokB. E. PapassotiriouI. ChrousosG. P. SingerT. 2017 Specific reduction in cortisol stress reactivity after social but not attention-based mental training Sci Adv 3 10 Search in Google Scholar

Engin, M. (2004). ECG beat classification using neuro-fuzzy network. Pattern Recognition Letters, 25(15), 1715–1722. EnginM. 2004 ECG beat classification using neuro-fuzzy network Pattern Recognition Letters 25 15 1715 1722 Search in Google Scholar

Fox, C. J., Mueller, S. T., Gray, H. M., Raber, J., & Piper, B. J. (2013). Evaluation of a short-form of the Berg Card Sorting Test. PloS One, 8(5), 1–4. FoxC. J. MuellerS. T. GrayH. M. RaberJ. PiperB. J. 2013 Evaluation of a short-form of the Berg Card Sorting Test PloS One 8 5 1 4 Search in Google Scholar

Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S., & Nagle, H. T. (1990). A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering, 37(1), 85–98. FriesenG. M. JannettT. C. JadallahM. A. YatesS. L. QuintS. NagleH. T. 1990 A comparison of the noise sensitivity of nine QRS detection algorithms IEEE Transactions on Biomedical Engineering 37 1 85 98 Search in Google Scholar

Fukunishi, M., Kurita, K., Yamamoto, S., & Tsumura, N. (2018). Video based measurement of heart rate and heart rate variability spectrogram from estimated hemoglobin information. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1405–1412. FukunishiM. KuritaK. YamamotoS. TsumuraN. 2018 Video based measurement of heart rate and heart rate variability spectrogram from estimated hemoglobin information Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1405 1412 Search in Google Scholar

Gabella, G. (2012). Structure of the autonomic nervous system. Springer. GabellaG. 2012 Structure of the autonomic nervous system Springer Search in Google Scholar

Garcia-Mancilla, J., & Gonzalez, V. M. (2015). Stress quantification using a wearable device for dail feedback to improve stress management. In X. Zheng, D. Zeng, H. Chen & L. S. (Eds.), Proc. International Conference on Smart Health (ICSH) (pp. 204–209). Springer, Cham. Garcia-MancillaJ. GonzalezV. M. 2015 Stress quantification using a wearable device for dail feedback to improve stress management In ZhengX. ZengD. ChenH. L. S. (Eds.), Proc. International Conference on Smart Health (ICSH) 204 209 Springer Cham Search in Google Scholar

Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats. Journal of Neuroscience, 34(19), 6573–6582. GarfinkelS. N. MinatiL. GrayM. A. SethA. K. DolanR. J. CritchleyH. D. 2014 Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats Journal of Neuroscience 34 19 6573 6582 Search in Google Scholar

Ghiasi, S., Greco, A., & Barbieri, R. e. a. (2020). Assessing Autonomic Function from Electrodermal Activity and Heart Rate Variability During Cold-Pressor Test and Emotional Challenge. Sci Rep, 10(5406), 1–13. GhiasiS. GrecoA. BarbieriR. e. a. 2020 Assessing Autonomic Function from Electrodermal Activity and Heart Rate Variability During Cold-Pressor Test and Emotional Challenge Sci Rep 10 5406 1 13 Search in Google Scholar

Goldberg, L. S., & Grandey, A. A. (2007). Display rules versus display autonomy: Emotion regulation, emotional exhaustion, and task performance in a call center simulation. Journal of Occupational Health Psychology, 12(3), 301–318. GoldbergL. S. GrandeyA. A. 2007 Display rules versus display autonomy: Emotion regulation, emotional exhaustion, and task performance in a call center simulation Journal of Occupational Health Psychology 12 3 301 318 Search in Google Scholar

Goldberger, J. J. (1999). Sympathovagal balance: how should we measure it? American Journal of Physiology-Heart and Circulatory Physiology, 276(4), H1273–H1280. GoldbergerJ. J. 1999 Sympathovagal balance: how should we measure it? American Journal of Physiology-Heart and Circulatory Physiology 276 4 H1273 H1280 Search in Google Scholar

Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74(2), 263–285. GrossmanP. TaylorE. W. 2007 Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions Biological Psychology 74 2 263 285 Search in Google Scholar

Grossmann, I., Sahdra, B. K., & Ciarrochi, J. (2016). A heart and a mind: Self-distancing facilitates the association between heart rate variability, and wise reasoning. Frontiers in Behavioral Neuroscience, 10(68), 1–10. GrossmannI. SahdraB. K. CiarrochiJ. 2016 A heart and a mind: Self-distancing facilitates the association between heart rate variability, and wise reasoning Frontiers in Behavioral Neuroscience 10 68 1 10 Search in Google Scholar

Hautala, A. J., Kiviniemi, A. M., & Tulppo, M. P. (2009). Individual responses to aerobic exercise: The role of the autonomic nervous system. Neuroscience & Biobehavioral Reviews, 33(2), 107–115. HautalaA. J. KiviniemiA. M. TulppoM. P. 2009 Individual responses to aerobic exercise: The role of the autonomic nervous system Neuroscience & Biobehavioral Reviews 33 2 107 115 Search in Google Scholar

He, J., Li, K., Liao, X., Zhang, P., & Jiang, N. (2019). Real-time detection of acute cognitive stress using a convolutional neural network from electrocardio graphic signal. IEEE Access, 7, 42710–42717. HeJ. LiK. LiaoX. ZhangP. JiangN. 2019 Real-time detection of acute cognitive stress using a convolutional neural network from electrocardio graphic signal IEEE Access 7 42710 42717 Search in Google Scholar

He, R., Wang, K., & Li, Q. e. a. (2017). A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization. EURASIP J. Adv. Signal Process, 82, 1–14. HeR. WangK. LiQ. e. a. 2017 A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization EURASIP J. Adv. Signal Process 82 1 14 Search in Google Scholar

Healey, J. (2015). Physiological sensing of emotion. In R. A. Calvo, S. D’Mello, J. M. Gratch & A. Kappas (Eds.), The oxford handbook of affective computing (pp. 1–22). Oxford University Press. HealeyJ. 2015 Physiological sensing of emotion In CalvoR. A. D’MelloS. GratchJ. M. KappasA. (Eds.), The oxford handbook of affective computing 1 22 Oxford University Press Search in Google Scholar

Hernández-Vicente, A., Hernando, D., Marín-Puyalto, J., Vicente-Rodríguez, G., Garatachea, N. Pueyo, E., & Bailón, R. (2021). Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups. Sensors (Basel), 29(3), 1–14. Hernández-VicenteA. HernandoD. Marín-PuyaltoJ. Vicente-RodríguezG. GaratacheaN. PueyoE. BailónR. 2021 Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups Sensors (Basel) 29 3 1 14 Search in Google Scholar

Hjortskov, N., Rissén, D., Blangsted, A. K., Fallentin, N., Lundberg, U., & Søgaard, K. (2004). The effect of mental stress on heart rate variability and blood pressure during computer work. European Journal of Applied Physiology, 92(1-2), 84–89. HjortskovN. RissénD. BlangstedA. K. FallentinN. LundbergU. SøgaardK. 2004 The effect of mental stress on heart rate variability and blood pressure during computer work European Journal of Applied Physiology 92 1-2 84 89 Search in Google Scholar

Holzman, J. B., & Bridgett, D. J. (2017). Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neuroscience & Biobehavioral Reviews, 74, 233–255. HolzmanJ. B. BridgettD. J. 2017 Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review Neuroscience & Biobehavioral Reviews 74 233 255 Search in Google Scholar

Hong, S., Zhou, Y., Shang, J., Xiao, C., & Sun, J. (2020). Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Computers in Biology and Medicine, 122, 103801. HongS. ZhouY. ShangJ. XiaoC. SunJ. 2020 Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review Computers in Biology and Medicine 122 103801 Search in Google Scholar

Ishaque, S., Khan, N., & Krishnan, S. (2021). Trends in heart-rate variability signal analysis. Frontiers in Digital Health, 3, 13. IshaqueS. KhanN. KrishnanS. 2021 Trends in heart-rate variability signal analysis Frontiers in Digital Health 3 13 Search in Google Scholar

Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., & Wiederhold, B. K. (2005). ECG to identify individuals. Pattern recognition, 38(1), 133–142. IsraelS. A. IrvineJ. M. ChengA. WiederholdM. D. WiederholdB. K. 2005 ECG to identify individuals Pattern recognition 38 1 133 142 Search in Google Scholar

Jatmiko, W., Ma’sum, M. A., Wisesa, H. A., & Sanabila, H. R. (2019). Developing smart Tele-ECG system for early detection and monitoring heart diseases based on ECG signal: progress and challenges. International Journal on Smart Sensing and Intelligent Systems, 12(1), 1–28. JatmikoW. Ma’sumM. A. WisesaH. A. SanabilaH. R. 2019 Developing smart Tele-ECG system for early detection and monitoring heart diseases based on ECG signal: progress and challenges International Journal on Smart Sensing and Intelligent Systems 12 1 1 28 Search in Google Scholar

Jelinek, H. F., August, K. G., Imam, M. H., Khandoker, A. H., Koenig, A., & Riener, R. (2011). Cortical response to psycho-physiological changes in auto-adaptive robot assisted gait training. Proc. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 7409–7412. JelinekH. F. AugustK. G. ImamM. H. KhandokerA. H. KoenigA. RienerR. 2011 Cortical response to psycho-physiological changes in auto-adaptive robot assisted gait training Proc. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) 7409 7412 Search in Google Scholar

Kang, S. J., Lee, S. Y., Cho, H. I., & Park, H. (2016). Ecg authentication system design based on signal analysis in mobile and wearable devices. IEEE Signal Processing Letters, 23(6), 805–808. KangS. J. LeeS. Y. ChoH. I. ParkH. 2016 Ecg authentication system design based on signal analysis in mobile and wearable devices IEEE Signal Processing Letters 23 6 805 808 Search in Google Scholar

Keller, J., Bless, H., Blomann, F., & Kleinböhl, D. (2011). Physiological aspects of flow experiences: Skills-demand-compatibility effects on heart rate variability and salivary cortisol. Journal of Experimental Social Psychology, 47(4), 849–852. KellerJ. BlessH. BlomannF. KleinböhlD. 2011 Physiological aspects of flow experiences: Skills-demand-compatibility effects on heart rate variability and salivary cortisol Journal of Experimental Social Psychology 47 4 849 852 Search in Google Scholar

Kelsey, R. M., Soderlund, K., & Arthur, C. (2004). Cardiovascular reactivity and adaptation to recurrent psychological stress: Replication and extension. Psychophysiology, 41(6), 924–934. KelseyR. M. SoderlundK. ArthurC. 2004 Cardiovascular reactivity and adaptation to recurrent psychological stress: Replication and extension Psychophysiology 41 6 924 934 Search in Google Scholar

Kofman, O., Meiran, N., Greenberg, E., Balas, M., & Cohen, H. (2006). Enhanced performance on executive functions associated with examination stress: Evidence from task-switching and Stroop paradigms. Cognition & Emotion, 20(5), 577–595. KofmanO. MeiranN. GreenbergE. BalasM. CohenH. 2006 Enhanced performance on executive functions associated with examination stress: Evidence from task-switching and Stroop paradigms Cognition & Emotion 20 5 577 595 Search in Google Scholar

Kontaxis, S., Orini, M., Gil, E., Posadas-de Miguel, M., Bernal, M. L., Aguiló, J., de la Camara, C., Laguna, P., & Bailón, R. (2018). Heart rate variability analysis guided by respiration in major depressive disorder. Proc. IEEE Computing in Cardiology Conference (CinC), 45, 1–4. KontaxisS. OriniM. GilE. Posadas-de MiguelM. BernalM. L. AguilóJ. de la CamaraC. LagunaP. BailónR. 2018 Heart rate variability analysis guided by respiration in major depressive disorder Proc. IEEE Computing in Cardiology Conference (CinC) 45 1 4 Search in Google Scholar

Koren, A., Jurčević, M., & Prasad, R. (2020). Comparison of data-driven models for cleaning ehealth sensor data: Use case on ecg signal. Wireless Pers Commun, 114. KorenA. JurčevićM. PrasadR. 2020 Comparison of data-driven models for cleaning ehealth sensor data: Use case on ecg signal Wireless Pers Commun 114 Search in Google Scholar

Laborde, S., Mosley, E., & Mertgen, A. (2018). Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning - Resting, Reactivity, and Recovery. Front Neurosci., 12, 1–14. LabordeS. MosleyE. MertgenA. 2018 Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning - Resting, Reactivity, and Recovery Front Neurosci 12 1 14 Search in Google Scholar

Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Frontiers in Psychology, 8, 213. LabordeS. MosleyE. ThayerJ. F. 2017 Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – Recommendations for Experiment Planning, Data Analysis, and Data Reporting Frontiers in Psychology 8 213 Search in Google Scholar

Lackner, H. K., Papousek, I., Batzel, J. J., Roessler, A., Scharfetter, H., & Hinghofer-Szalkay, H. (2011). Phase synchronization of hemodynamic variables and respiration during mental challenge. International Journal of Psychophysiology, 79(3), 401–409. LacknerH. K. PapousekI. BatzelJ. J. RoesslerA. ScharfetterH. Hinghofer-SzalkayH. 2011 Phase synchronization of hemodynamic variables and respiration during mental challenge International Journal of Psychophysiology 79 3 401 409 Search in Google Scholar

Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & Fox, P. T. (2005). A comparison of label-based review and ALE meta-analysis in the Stroop task. Human Brain Mapping, 25(1), 6–21. LairdA. R. McMillanK. M. LancasterJ. L. KochunovP. TurkeltaubP. E. PardoJ. V. FoxP. T. 2005 A comparison of label-based review and ALE meta-analysis in the Stroop task Human Brain Mapping 25 1 6 21 Search in Google Scholar

Lassoued, H., Ketata, R., & Yacoub, S. (2018). ECG decision support system based on feedforward neural networks. International Journal on Smart Sensing and Intelligent Systems, 11(1), 1–15. LassouedH. KetataR. YacoubS. 2018 ECG decision support system based on feedforward neural networks International Journal on Smart Sensing and Intelligent Systems 11 1 1 15 Search in Google Scholar

Lastre-Domínguez, C., Shmaliy, Y. S., Ibarra-Manzano, O., Munoz-Minjarez, J., & Vazquez-Olguin, M. (2018). Fiducial features extraction for ecg signals using state-space unbiased fir smoothing. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 1–6. Lastre-DomínguezC. ShmaliyY. S. Ibarra-ManzanoO. Munoz-MinjarezJ. Vazquez-OlguinM. 2018 Fiducial features extraction for ecg signals using state-space unbiased fir smoothing 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) 1 6 Search in Google Scholar

Lee WK, P. K., Yoon H. (2016). Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis. Ann Biomed Eng, 74(7), 2292–2301. LeeWK P.K. YoonH. 2016 Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis Ann Biomed Eng 74 7 2292 2301 Search in Google Scholar

Lehrer, P., Vaschillo, E., Lu, S. E., Eckberg, D., Vaschillo, B., Scardella, A., & Habib, R. (2006). Heart rate variability biofeedback: Effects of age on heart rate variability, baroreflex gain, and asthma. Chest, 129(2), 278–284. LehrerP. VaschilloE. LuS. E. EckbergD. VaschilloB. ScardellaA. HabibR. 2006 Heart rate variability biofeedback: Effects of age on heart rate variability, baroreflex gain, and asthma Chest 129 2 278 284 Search in Google Scholar

Li, Z., Snieder, H., Su, S., Ding, X., Thayer, J. F., Treiber, F. A., & Wang, X. (2009). A longitudinal study in youth of heart rate variability at rest and in response to stress. International Journal of Psychophysiology, 73(3), 212–217. LiZ. SniederH. SuS. DingX. ThayerJ. F. TreiberF. A. WangX. 2009 A longitudinal study in youth of heart rate variability at rest and in response to stress International Journal of Psychophysiology 73 3 212 217 Search in Google Scholar

Liu, D., & Ulrich, M. (2014). Listen to your heart: Stress prediction using consumer heart rate sensors (tech. rep. CS 229: Machine Learning) [[Online]. Available: http://cs229.stanford.edu/proj2013/LiuUlrich-ListenToYourHeartStressPredictionUsingConsumerHeartRateSensors.pdf]. Computer Science Department, Stanford University. Stanford, CA, USA. LiuD. UlrichM. 2014 Listen to your heart: Stress prediction using consumer heart rate sensors (tech. rep. CS 229: Machine Learning) [[Online] Available: http://cs229.stanford.edu/proj2013/LiuUlrich-ListenToYourHeartStressPredictionUsingConsumerHeartRateSensors.pdf]. Computer Science Department, Stanford University Stanford, CA, USA Search in Google Scholar

Lombardi, F., & Stein, P. K. (2011). Origin of heart rate variability and turbulence: An appraisal of autonomic modulation of cardiovascular function. Frontiers in Physiology, 2(95), 1–7. LombardiF. SteinP. K. 2011 Origin of heart rate variability and turbulence: An appraisal of autonomic modulation of cardiovascular function Frontiers in Physiology 2 95 1 7 Search in Google Scholar

Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. MalikM. BiggerJ. T. CammA. J. KleigerR. E. MallianiA. MossA. J. SchwartzP. J. 1996 Heart rate variability: Standards of measurement, physiological interpretation, and clinical use European Heart Journal 17 3 354 381 Search in Google Scholar

Marques, A. H., Silverman, M. N., & Sternberg, E. (2010). Evaluation of stress systems by applying noninvasive methodologies: Measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol. Neuroimmunomodulation, 17(3), 205–208. MarquesA. H. SilvermanM. N. SternbergE. 2010 Evaluation of stress systems by applying noninvasive methodologies: Measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol Neuroimmunomodulation 17 3 205 208 Search in Google Scholar

Mason, O., Lynch, K., Rashid, M., Reid, A., Elashoff, R., & Victor, R. (2018). Systolic Blood Pressure as a Novel Determinant of Nocturia in Non-Hispanic Black Men. Journal of the American Society of Hypertension: JASH, 134. MasonO. LynchK. RashidM. ReidA. ElashoffR. VictorR. 2018 Systolic Blood Pressure as a Novel Determinant of Nocturia in Non-Hispanic Black Men Journal of the American Society of Hypertension: JASH 134 Search in Google Scholar

Masood, K., & Alghamdi, M. A. (2019). Modeling mental stress using a deep learning framework. IEEE Access, 7, 68446–68454. MasoodK. AlghamdiM. A. 2019 Modeling mental stress using a deep learning framework IEEE Access 7 68446 68454 Search in Google Scholar

McDuff, D., Gontarek, S., & Picard, R. (2014). Remote measurement of cognitive stress via heart rate variability. Proc. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 2957–2960. McDuffD. GontarekS. PicardR. 2014 Remote measurement of cognitive stress via heart rate variability Proc. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) 2957 2960 Search in Google Scholar

Melillo, P., Bracale, M., & Pecchia, L. (2011). Nonlinear heart rate variability features for real-life stress detection. Case study: students under stress due to university examination. Biomedical Engineering Online, 10(1), 1–13. MelilloP. BracaleM. PecchiaL. 2011 Nonlinear heart rate variability features for real-life stress detection. Case study: students under stress due to university examination Biomedical Engineering Online 10 1 1 13 Search in Google Scholar

Melillo, P., De Luca, N., Bracale, M., & Pecchia, L. (2013). Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability. IEEE Journal of Biomedical and Health Informatics, 17(3), 727–733. MelilloP. De LucaN. BracaleM. PecchiaL. 2013 Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability IEEE Journal of Biomedical and Health Informatics 17 3 727 733 Search in Google Scholar

Melillo, P., Izzo, R., De Luca, N., & Pecchia, L. (2012). Heart rate variability and target organ damage in hypertensive patients. BMC Cardiovascular Disorders, 12(105), 1–11. MelilloP. IzzoR. De LucaN. PecchiaL. 2012 Heart rate variability and target organ damage in hypertensive patients BMC Cardiovascular Disorders 12 105 1 11 Search in Google Scholar

Merri, M., Farden, D. C., Mottley, J. G., & Titlebaum, E. L. (1990). Sampling frequency of the electrocardiogram for spectral analysis of the heart rate variability. IEEE Transactions on Biomedical Engineering, 37(1), 99–106. MerriM. FardenD. C. MottleyJ. G. TitlebaumE. L. 1990 Sampling frequency of the electrocardiogram for spectral analysis of the heart rate variability IEEE Transactions on Biomedical Engineering 37 1 99 106 Search in Google Scholar

Mourtakos, S., Vasiliou, G., Papageorgiou, C., Konotangelos, K., Philippou, A., Bersimis, F., Geladas, N., Koutsilieris, M., Sidossis, L., Tsirmpas, C., & Papageorgiou, C. (2021). Resilience of the hellenic navy SEALs assessed by heart rate variability during cognitve tasks. European Heart Journal, 42(Supplement_1). MourtakosS. VasiliouG. PapageorgiouC. KonotangelosK. PhilippouA. BersimisF. GeladasN. KoutsilierisM. SidossisL. TsirmpasC. PapageorgiouC. 2021 Resilience of the hellenic navy SEALs assessed by heart rate variability during cognitve tasks European Heart Journal 42 Supplement_1 Search in Google Scholar

Mporas, I., Tsirka, V., Zacharaki, E. I., Koutroumanidis, M., Richardson, M., & Megalooikonomou, V. (2015). Seizure detection using eeg and ecg signals for computer-based monitoring, analysis and management of epileptic patients. Expert Systems with Applications, 42(6), 3227–3233. MporasI. TsirkaV. ZacharakiE. I. KoutroumanidisM. RichardsonM. MegalooikonomouV. 2015 Seizure detection using eeg and ecg signals for computer-based monitoring, analysis and management of epileptic patients Expert Systems with Applications 42 6 3227 3233 Search in Google Scholar

Ni, A., Azarang, A., & Kehtarnavaz, N. (2021). A review of deep learning-based contactless heart rate measurement methods. Sensors, 21(11). NiA. AzarangA. KehtarnavazN. 2021 A review of deep learning-based contactless heart rate measurement methods Sensors 21 11 Search in Google Scholar

Niskanen, J. P., Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2004). Software for advanced HRV analysis. Computer Methods and Programs in Biomedicine, 76(1), 73–81. NiskanenJ. P. TarvainenM. P. Ranta-AhoP. O. KarjalainenP. A. 2004 Software for advanced HRV analysis Computer Methods and Programs in Biomedicine 76 1 73 81 Search in Google Scholar

Nunan, D., Sandercock, G. R., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing and Clinical Electrophysiology, 33(11), 1407–1417. NunanD. SandercockG. R. BrodieD. A. 2010 A quantitative systematic review of normal values for short-term heart rate variability in healthy adults Pacing and Clinical Electrophysiology 33 11 1407 1417 Search in Google Scholar

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230–236. PanJ. TompkinsW. J. 1985 A real-time QRS detection algorithm IEEE Transactions on Biomedical Engineering BME- 32 3 230 236 Search in Google Scholar

Pan, R. L. C., & Li, J. K. J. (2007). A noninvasive parametric evaluation of stress effects on global cardiovascular function. Cardiovascular Engineering, 7(2), 74–80. PanR. L. C. LiJ. K. J. 2007 A noninvasive parametric evaluation of stress effects on global cardiovascular function Cardiovascular Engineering 7 2 74 80 Search in Google Scholar

Papousek, I., Nauschnegg, K., Paechter, M., Lackner, H. K., Goswami, N., & Schulter, G. (2010). Trait and state positive affect and cardiovascular recovery from experimental academic stress. Biological Psychology, 83(2), 108–115. PapousekI. NauschneggK. PaechterM. LacknerH. K. GoswamiN. SchulterG. 2010 Trait and state positive affect and cardiovascular recovery from experimental academic stress Biological Psychology 83 2 108 115 Search in Google Scholar

Pope, J. H., Aufderheide, T. P., Ruthazer, R., Woolard, R. H., Feldman, J. A., Beshansky, J. R., Griffith, J. L., & Selker, H. P. (2000). Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med., 342(16), 1163–1170. PopeJ. H. AufderheideT. P. RuthazerR. WoolardR. H. FeldmanJ. A. BeshanskyJ. R. GriffithJ. L. SelkerH. P. 2000 Missed diagnoses of acute cardiac ischemia in the emergency department N Engl J Med 342 16 1163 1170 Search in Google Scholar

Pykett, J., Chrisinger, B., Kyriakou, K., Osborne, T., Resch, B., Stathi, A., Toth, E., & Whittaker, A. C. (2020). Developing a Citizen Social Science approach to understand urban stress and promote wellbeing in urban communities. Palgrave Commun, 6(85), 1–11. PykettJ. ChrisingerB. KyriakouK. OsborneT. ReschB. StathiA. TothE. WhittakerA. C. 2020 Developing a Citizen Social Science approach to understand urban stress and promote wellbeing in urban communities Palgrave Commun 6 85 1 11 Search in Google Scholar

Quintana, D. S., & Heathers, J. A. (2014). Considerations in the assessment of heart rate variability in biobehavioral research. Frontiers in Psychology, 5(805), 1–10. QuintanaD. S. HeathersJ. A. 2014 Considerations in the assessment of heart rate variability in biobehavioral research Frontiers in Psychology 5 805 1 10 Search in Google Scholar

Raaijmakers, S. F., Steel, F. W., de Goede, M., van Wouwe, N. C., van Erp, J. B., & Brouwer, A. M. (2013). Heart rate variability and skin conductance biofeedback: A triple-blind randomized controlled study. Proc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction, 289–293. RaaijmakersS. F. SteelF. W. de GoedeM. van WouweN. C. van ErpJ. B. BrouwerA. M. 2013 Heart rate variability and skin conductance biofeedback: A triple-blind randomized controlled study Proc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction 289 293 Search in Google Scholar

Rachakonda, L., Mohanty, S. P., & Kougianos, E. (2020). Ifeliz: An approach to control stress in the midst of the global pandemic and beyond for smart cities using the iomt. 2020 IEEE International Smart Cities Conference (ISC2), 1–7. RachakondaL. MohantyS. P. KougianosE. 2020 Ifeliz: An approach to control stress in the midst of the global pandemic and beyond for smart cities using the iomt 2020 IEEE International Smart Cities Conference (ISC2) 1 7 Search in Google Scholar

Ribeiro, R. T., & Cunha, J. P. S. (2018). A regression approach based on separability maximization for modeling a continuous-valued stress index from electrocardiogram data. Biomedical Signal Processing and Control, 46, 33–45. RibeiroR. T. CunhaJ. P. S. 2018 A regression approach based on separability maximization for modeling a continuous-valued stress index from electrocardiogram data Biomedical Signal Processing and Control 46 33 45 Search in Google Scholar

Rudovic, Ognjen and Lee, Jaeryoung and Dai, Miles and Schuller, Björn and Picard, Rosalind W. (2018). Personalized machine learning for robot perception of affect and engagement in autism therapy. Science Robotics, 3(19). RudovicOgnjen LeeJaeryoung DaiMiles SchullerBjörn PicardRosalind W. 2018 Personalized machine learning for robot perception of affect and engagement in autism therapy Science Robotics 3 19 Search in Google Scholar

Saini, S. K., & Gupta, R. (2019). A review on ecg signal analysis for mental stress assessment. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), 915–918. SainiS. K. GuptaR. 2019 A review on ecg signal analysis for mental stress assessment 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom) 915 918 Search in Google Scholar

Salahuddin, L., Cho, J., Jeong, M. G., & Kim, D. (2007). Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Proc. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 4656–4659. SalahuddinL. ChoJ. JeongM. G. KimD. 2007 Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings Proc. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) 4656 4659 Search in Google Scholar

Sano, A., & Picard, R. W. (2013). Stress recognition using wearable sensors and mobile phones. Proc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction, 671–676. SanoA. PicardR. W. 2013 Stress recognition using wearable sensors and mobile phones Proc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction 671 676 Search in Google Scholar

Satya, A. P. (2009). Effects of physical and mental tasks on heart rate variability (Master’s thesis) [Online]. Available: https://digitalcommons.lsu.edu/gradschool_theses/3928/]. Department of Construction Management & Industrial Engineering, Louisiana State University. Baton Rouge, LA 70803, USA. SatyaA. P. 2009 Effects of physical and mental tasks on heart rate variability (Master’s thesis) [Online] Available: https://digitalcommons.lsu.edu/gradschool_theses/3928/]. Department of Construction Management & Industrial Engineering, Louisiana State University Baton Rouge, LA 70803, USA Search in Google Scholar

Saxena, S. C., Kumar, V., & Hamde, S. T. (2002). Feature extraction from ECG signals using wavelet transform for disease diagnostics. International Journal of Systems Science, 33(13), 1073–1085. SaxenaS. C. KumarV. HamdeS. T. 2002 Feature extraction from ECG signals using wavelet transform for disease diagnostics International Journal of Systems Science 33 13 1073 1085 Search in Google Scholar

Schubert, C., Lambertz, M., Nelesen, R. A., Bardwell, W., Choi, J. B., & Dimsdale, J. E. (2009). Effects of stress on heart rate complexity — A comparison between short-term and chronic stress. Biological Psychology, 80(3), 325–332. SchubertC. LambertzM. NelesenR. A. BardwellW. ChoiJ. B. DimsdaleJ. E. 2009 Effects of stress on heart rate complexity — A comparison between short-term and chronic stress Biological Psychology 80 3 325 332 Search in Google Scholar

Sieciński, S., & Kostka, P. (2019). Influence of music on HRV indices derived from ECG and SCG [Online]. Available: http://dx.doi.org/10.13140/RG.2.2.30593.20329]. SiecińskiS. KostkaP. 2019 Influence of music on HRV indices derived from ECG and SCG [Online] Available: http://dx.doi.org/10.13140/RG.2.2.30593.20329]. Search in Google Scholar

Siegel, N. S., & Castellan, Jr., J. (1988). Non parametric statistics for the behavioral sciences (2nd). McGraw-Hill. SiegelN. S. CastellanJ.Jr. 1988 Non parametric statistics for the behavioral sciences 2nd McGraw-Hill Search in Google Scholar

Singh, R. R., Conjeti, S., & Banerjee, R. (2013). A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals. Biomedical Signal Processing and Control, 8(6), 740–754. SinghR. R. ConjetiS. BanerjeeR. 2013 A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals Biomedical Signal Processing and Control 8 6 740 754 Search in Google Scholar

Sinha, A., Das, P., Gavas, R., Chatterjee, D., & Saha, S. K. (2016). Physiological sensing based stress analysis during assessment. Proc. IEEE Frontiers in Education Conference (FIE), 1–8. SinhaA. DasP. GavasR. ChatterjeeD. SahaS. K. 2016 Physiological sensing based stress analysis during assessment Proc. IEEE Frontiers in Education Conference (FIE) 1 8 Search in Google Scholar

Sinha, A., Gavas, R., Chatterjee, D., Das, R., & Sinharay, A. (2015). Dynamic assessment of learners’ mental state for an improved learning experience. Proc. IEEE Frontiers in Education Conference (FIE), 1–9. SinhaA. GavasR. ChatterjeeD. DasR. SinharayA. 2015 Dynamic assessment of learners’ mental state for an improved learning experience Proc. IEEE Frontiers in Education Conference (FIE) 1 9 Search in Google Scholar

Soekadar, S. R., Witkowski, M., Gómez, C., Opisso, E., Medina, J., Cortese, M., Cempini, M., Carrozza, M. C., Cohen, L. G., Birbaumer, N., & Vitiello, N. (2016). Hybrid EEG/EOG-base brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. 1(1). SoekadarS. R. WitkowskiM. GómezC. OpissoE. MedinaJ. CorteseM. CempiniM. CarrozzaM. C. CohenL. G. BirbaumerN. VitielloN. 2016 Hybrid EEG/EOG-base brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia 1 1 Search in Google Scholar

Sutton, A. J., Abrams, K. R., Jones, D. R., Jones, D. R., Sheldon, T. A., & Song, F. (2000). Methods for meta-analysis in medical research. John Wiley. SuttonA. J. AbramsK. R. JonesD. R. JonesD. R. SheldonT. A. SongF. 2000 Methods for meta-analysis in medical research John Wiley Search in Google Scholar

Tabar, Y. R., & Halici, U. (2016). A novel deep learning approach for classification of EEG motor imagery signals. Journal of Neural Engineering, 14(1), 1–11. TabarY. R. HaliciU. 2016 A novel deep learning approach for classification of EEG motor imagery signals Journal of Neural Engineering 14 1 1 11 Search in Google Scholar

Taelman, J., Vandeput, S., Vlemincx, E., Spaepen, A., & Van Huffel, S. (2011). Instantaneous changes in heart rate regulation due to mental load in simulated office work. European Journal of Applied Physiology, 111(7), 1497–1505. TaelmanJ. VandeputS. VlemincxE. SpaepenA. Van HuffelS. 2011 Instantaneous changes in heart rate regulation due to mental load in simulated office work European Journal of Applied Physiology 111 7 1497 1505 Search in Google Scholar

Takakura, I. T., Hoshi, R. A., Santos, M. A., Pivatelli, F. C., Nóbrega, J. H., Guedes, D. L. Nogueira, V. F., Frota, T. Q., Castelo, G. C., & Godoy, M. F. (2017). Recurrence Plots: a New Tool for Quantification of Cardiac Autonomic Nervous System Recovery after Transplant. Braz J Cardiovasc Surg., 32(4), 245–252. TakakuraI. T. HoshiR. A. SantosM. A. PivatelliF. C. NóbregaJ. H. GuedesD. L. NogueiraV. F. FrotaT. Q. CasteloG. C. GodoyM. F. 2017 Recurrence Plots: a New Tool for Quantification of Cardiac Autonomic Nervous System Recovery after Transplant Braz J Cardiovasc Surg 32 4 245 252 Search in Google Scholar

Tharion, E., Parthasarathy, S., & Neelakantan, N. (2009). Short-term heart rate variability measures in students during examinations. The National Medical Journal of India, 22(2), 63–66. TharionE. ParthasarathyS. NeelakantanN. 2009 Short-term heart rate variability measures in students during examinations The National Medical Journal of India 22 2 63 66 Search in Google Scholar

Thayer, J. F., Åhs, F., Fredrikson, M., Sollers III, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756. ThayerJ. F. ÅhsF. FredriksonM. SollersJ. J.III WagerT. D. 2012 A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health Neuroscience & Biobehavioral Reviews 36 2 747 756 Search in Google Scholar

Timothy, V., Prihatmanto, A. S., & Rhee, K. H. (2016). R-to-R extraction and preprocessing procedure for an automated diagnosis of various diseases from ECG data. Journal of Multimedia and Information System, 3(2), 1–8. TimothyV. PrihatmantoA. S. RheeK. H. 2016 R-to-R extraction and preprocessing procedure for an automated diagnosis of various diseases from ECG data Journal of Multimedia and Information System 3 2 1 8 Search in Google Scholar

Traina, M., Cataldo, A., Galullo, F., & Russo, G. (2011). Effect of anxiety due to mental stress on heart rate variability in healthy subjects. Minerva Psichiatrica, 52(4), 227–231. TrainaM. CataldoA. GalulloF. RussoG. 2011 Effect of anxiety due to mental stress on heart rate variability in healthy subjects Minerva Psichiatrica 52 4 227 231 Search in Google Scholar

Visnovcova, Z., Mestanik, M., Javorka, M., Mokra, D., Gala, M., Jurko, A., Calkovska, A., & Tonhajzerova, I. (2014). Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiological Measurement, 35(7), 1319–1334. VisnovcovaZ. MestanikM. JavorkaM. MokraD. GalaM. JurkoA. CalkovskaA. TonhajzerovaI. 2014 Complexity and time asymmetry of heart rate variability are altered in acute mental stress Physiological Measurement 35 7 1319 1334 Search in Google Scholar

Vuksanović V, G. V. (2007). Heart rate variability in mental stress aloud. Med Eng Phys., 29(3), 344–349. https://doi.org/10.1016/j.medengphy.2006.05.011 VuksanovićV G.V. 2007 Heart rate variability in mental stress aloud Med Eng Phys 29 3 344 349 https://doi.org/10.1016/j.medengphy.2006.05.011 Search in Google Scholar

Wu, W., Pirbhulal, S., Zhang, H., & Mukhopadhyay, S. C. (2019). Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor system. IEEE Journal of Biomedical and Health Informatics, 23(2), 703–713. WuW. PirbhulalS. ZhangH. MukhopadhyayS. C. 2019 Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor system IEEE Journal of Biomedical and Health Informatics 23 2 703 713 Search in Google Scholar

Ye, C., Vijaya Kumar, B. V. K., & Coimbra, M. T. (2012). Heartbeat classification using morphological and dynamic features of ecg signals. IEEE Transactions on Biomedical Engineering, 59(10), 2930–2941. YeC. Vijaya KumarB. V. K. CoimbraM. T. 2012 Heartbeat classification using morphological and dynamic features of ecg signals IEEE Transactions on Biomedical Engineering 59 10 2930 2941 Search in Google Scholar

Yu, X., & Zhang, J. (2012). Estimating the cortex and autonomic nervous activity during a mental arithmetic task. Biomedical Signal Processing and Control, 7(3), 303–308. YuX. ZhangJ. 2012 Estimating the cortex and autonomic nervous activity during a mental arithmetic task Biomedical Signal Processing and Control 7 3 303 308 Search in Google Scholar

Zandbelt, B. B., Gladwin, T. E., Raemaekers, M., van Buuren, M., Neggers, S. F., Kahn, R. S., Ramsey, N. F., & Vink, M. (2008). Within-subject variation in BOLD-fMRI signal changes across repeated measurements: Quantification and implications for sample size. Neuroimage, 42(1), 196–206. ZandbeltB. B. GladwinT. E. RaemaekersM. van BuurenM. NeggersS. F. KahnR. S. RamseyN. F. VinkM. 2008 Within-subject variation in BOLD-fMRI signal changes across repeated measurements: Quantification and implications for sample size Neuroimage 42 1 196 206 Search in Google Scholar

Language:
English
Publication timeframe:
1 times per year
Journal Subjects:
Engineering, Introductions and Overviews, Engineering, other