O artykule
Kategoria artykułu: Original Study
Data publikacji: 20 wrz 2024
Zakres stron: 267 - 292
Otrzymano: 29 kwi 2024
Przyjęty: 05 wrz 2024
DOI: https://doi.org/10.2478/ijmce-2025-0020
Słowa kluczowe
© 2025 Jon Rokne, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Potential triple prime, C(13, 3)_
Parameter | val | val | val | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rel. index | −6 | −5 | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
constellation | |||||||||||||
divisors/prime | 2 | 2 | 2 | 2 | 2 | 2 |
The first few symmetric sixtuple constellations, third case, are given with C(29, 6)_
constellation | ||||||
---|---|---|---|---|---|---|
sixtuple prime 1 | 151 | 157 | 163 | 167 | 173 | 179 |
sixtuple prime 2 | 20101 | 20107 | 20113 | 20117 | 20123 | 20129 |
sixtuple prime 3 | 128461 | 128467 | 128473 | 128477 | 128483 | 128489 |
sixtuple prime 4 | 297601 | 297607 | 297613 | 297617 | 297623 | 297629 |
sixtuple prime 5 | 350431 | 350437 | 350443 | 350447 | 350453 | 350459 |
sixtuple prime 6 | 354301 | 354307 | 354313 | 354317 | 354323 | 354329 |
sixtuple prime 7 | 531331 | 531337 | 531343 | 531347 | 531353 | 531359 |
The three 10-tuples found with rel_ indices (−19, −17, −13, −11, −1, 1, 11, 13, 17, 19) when entries with indices (−7, 7) in the table in Figure 1 are composite_
10-tuple center | factors of center | entry index −7 | entry index +7 |
---|---|---|---|
39713433690 | (2, 3, 5, 7, 23, 8222243) | composite | composite |
66419473050 | (2, (3, 2), (5, 2), (7, 2), 3012221) | composite | composite |
71525244630 | (2, 3, 5, (7, 3), 6950947) | composite | composite |
The four 10-tuples found when rel_ indices (−19, −17, −13, −11, −7, 7, 11, 13, 17, 19) are specified with (−1, 1) in the table in Figure 1 being composite_
10-tuple center | factors of center | entry index −1 | entry index +1 |
---|---|---|---|
30 | (2, 3, 5) | composite | composite |
1864508550 | (2, 3, 5, 5, 241, 151577) | composite | composite |
4763132670 | (2, 3, 5, 7193, 22073) | composite | composite |
5302859550 | 2, 3, 5, 5, 167, 211691 | composite | composite |
First and last computed cases for constellation in Table 23_
Parameter | value | value | value | value | value | value | value | value |
---|---|---|---|---|---|---|---|---|
first case | ||||||||
344231 | 344237 | 344243 | 344251 | 344253 | 344259 | 344263 | 344267 | |
last case | ||||||||
944554301 | 944554307 | 944554313 | 944554321 | 944554323 | 944554329 | 944554333 | 944554337 |
The first 10-tuple C(39, 10) prime constellation, center c = 39713433690_
rel. index | −19 | −17 | −13 | −11 | −1 |
prime | |||||
value | 39713433671 | 39713433673 | 39713433677 | 39713433679 | 39713433689 |
rel. index | 1 | 11 | 13 | 17 | 19 |
prime | |||||
value | 39713433691 | 39713433701 | 39713433703 | 39713433707 | 39713433709 |
Triple prime (47, 53, 59) with m = 13_
Parameter | val | val | val | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
constellation | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |
factors | 47 | 24 * 3 | 77 | 2 * 52 | 3 * 17 | 22 * 13 | 53 | 2 * 33 | 5 * 11 | 23 * 7 | 3 * 19 | 2 * 29 | 59 |
Summarizing the even symmetric constellations, smallest extent so far_
configurations | value of |
number of cases | comment | |
---|---|---|---|---|
2-tuples (double primes) | 3 | no limit | YES obvious | extensively studied |
4-tuples (quadruple primes) | 9 | 166 cases up to 107 | YES as shown in |
|
6-tuples (sixtuple primes) | 17 | 18 cases up to 107 | YES as shown in |
The cases with |
8-tuples (octuple primes) | 27 | 28 cases up to 1010 | Not verified | The cases with |
10-tuples | 35 | 2 cases up to 1010 | Not verified | The cases with |
Some 4-tuple symmetric primes, C(9, 4)_
constellations | |||||
---|---|---|---|---|---|
quadruple prime, special case 1 | 5 | 7 | 11 | 13 | 9 |
quadruple prime 2 | 11 | 13 | 17 | 19 | 15 |
quadruple prime 3 | 101 | 103 | 107 | 109 | 105 |
quadruple prime 4 | 191 | 193 | 197 | 199 | 195 |
quadruple prime 5 | 821 | 823 | 827 | 829 | 825 |
quadruple prime 6 | 1481 | 1483 | 1487 | 1489 | 1485 |
quadruple prime 7 | 1871 | 1873 | 1877 | 1879 | 1875 |
9-tuple prime, C(120, 9)_
Parameter | value | value | value | value |
---|---|---|---|---|
constellation | ||||
location | ||||
divisors/prime | 12383210011 | 12383210029 | 12383210041 | 12383210053 |
center | ||||
location | ||||
prime | 12383210071 | |||
constellation | ||||
location | ||||
divisors/prime | 12383210089 | 12383210101 | 12383210113 | 12383210131 |
Divisibility of symmetric sixtuple prime constellations with C(27, 6), even base case_
Parameter | val | val | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|---|---|
rel. index | −13 | −12 | −11 | −10 | −9 | −8 | −7 | −6 | −5 | −4 | −3 | −2 |
constellation | ||||||||||||
divisibility | 2, 3 | 2, 5 | 3 | 2 | 2, 3 | 5 | 2 | 3 | 2 | |||
rel. index | −1 | 0 | 1 | |||||||||
constellation | ||||||||||||
divisibility | 2, 3, 5 | |||||||||||
rel. index | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
constellation | ||||||||||||
divisibility | 2 | 3 | 2 | 5 | 2, 3 | 2 | 3 | 2, 5 | 2, 3 |
Centers of the 5 10-tuple constellations C(47, 10)_
90 | 1011208680 | 2233694520 | 4143953640 | 6486125010 |
Divisibility of symmetric octuple prime constellation - second case_
Parameter | val | val | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|---|---|
rel. index | −19 | −18 | −17 | −16 | −15 | −14 | −13 | −12 | −11 | −10 | −9 | −8 |
constellation | ||||||||||||
divis | 2, 3 | ? | 2 | 3, 5 | 2 | 2, 3 | ? | 2, 5 | 3 | 2 | ||
rel. index | −7 | −6 | −5 | −4 | −3 | −2 | ||||||
constellation | ||||||||||||
divis | 2 | 5 | 2 | 3 | 2 | |||||||
rel. index | −1 | 0 | 1 | |||||||||
constellation | ||||||||||||
divis | prime | 2, 3, 5 | prime | |||||||||
rel. index | 2 | 3 | 4 | 5 | 6 | 7 | ||||||
constellation | ||||||||||||
divis | 2 | 3 | 2 | 5 | 2, 3 | |||||||
rel. index | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 1 | 18 | 19 |
constellation | ||||||||||||
divis | 2 | 3 | 2, 5 | ? | 2, 3 | 2 | 3, 5 | 2 | ? | 2, 3 |
The first few symmetric eight-tuple constellations C(27, 8) with rel_ indices at (−13, −11, −7, −1, 1, 7, 11, 13)_
constellation | ||||||||
---|---|---|---|---|---|---|---|---|
eight-tuple 1 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
eight-tuple 2 | 1277 | 1279 | 1283 | 1289 | 1291 | 1297 | 1301 | 1303 |
eight-tuple 3 | 113147 | 113149 | 113153 | 113159 | 113161 | 113167 | 113171 | 113173 |
eight-tuple 4 | 2580647 | 2580649 | 2580653 | 2580659 | 2580661 | 2580667 | 2580671 | 2580673 |
eight-tuple 5 | 20737877 | 20737879 | 20737883 | 20737889 | 20737891 | 20737897 | 20737901 | 20737903 |
Summarizing the odd symmetric constellations, smallest extent so far_
constellations | value of |
number of cases | is minimal ? | comment |
---|---|---|---|---|
3-tuples (triple primes) | 13 | 758163 up to 109 | YES by construction | |
5-tuples (qunintuple primes) | 37 | 124 up to 107 | YES as shown in |
The cases with |
7-tuples (qunintuple primes) | 73 | 124 up to 109 | NO | |
9-tuples | 121 | 124 up to 2 * 1010 | NO | 121 is the smallest extent found so far |
Case_1: possible symmetric quintuple prime_
Parameter | val | val | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|---|---|
rel. index | −18 | −17 | 16 | −15 | −14 | −13 | −12 | −11 | −10 | −9 | −8 | −7 |
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | 2 | 2 | 2 | ||||||
rel. index | −6 | −5 | −4 | −3 | −2 | −1 | ||||||
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | |||||||||
rel. index | 0 | |||||||||||
center | ||||||||||||
prime | ||||||||||||
rel. index | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | |||||||||
rel. index | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | 2 | 2 | 2 |
Divisibility of symmetric 4-tuple prime C(3, 9) by 2, 3 and 5_
Parameter | value | value | value | value | value | value | value | value | value |
---|---|---|---|---|---|---|---|---|---|
rel. index | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 |
constellation | |||||||||
divisors/prime | 2, 3 | 2 | 3, 5 | 2 | 2, 3 |
Divisibility of symmetric six-tuple prime constellations - C(17, 6)_ Center configuration is even second case p3, e4, c2, e5, p4_
Parameter | value | value | value | value | value | value |
---|---|---|---|---|---|---|
rel. index | −8 | −7 | −6 | −5 | −4 | −3 |
constellation | ||||||
divisibility/prime | 2, 3, 7 | 2, 5 | 2 | |||
center | ||||||
rel. index | −2 | −1 | 0 | 1 | 2 | |
constellation | 2, 3 | 3, 5, 7 | 2 | |||
rel. index | 3 | 4 | 5 | 6 | 7 | 8 |
constellation | ||||||
divisibility/prime | 2 | 2, 3, 7 | 2 |
Potential triple prime, C(9, 3)_
Parameter | value | value | value | value | value | value | value | value | value |
---|---|---|---|---|---|---|---|---|---|
rel. index | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 |
constellation | |||||||||
divisors/prime | 2 | 2 | 2 | 2 |
The first few examples of computations according to Table 1_
The pair of double primes. | ||||||
---|---|---|---|---|---|---|
The next double primes. | ||||||
sequence 1 | 11 | 13 | 17 | 19 | 29 | 31 |
sequence 2 | 18041 | 18043 | 18047 | 18049 | 18059 | 18061 |
sequence 3 | 97841 | 97843 | 97847 | 97849 | 97859 | 97861 |
sequence 4 | 165701 | 165703 | 165707 | 165709 | 165719 | 165721 |
sequence 5 | 392261 | 392263 | 392267 | 392269 | 392279 | 392281 |
sequence 6 | 663581 | 663583 | 663587 | 663589 | 663599 | 663601 |
sequence 7 | 1002341 | 1002343 | 1002347 | 1002349 | 1002359 | 1002361 |
sequence 8 | 1068701 | 1068703 | 1068707 | 1068709 | 1068719 | 1068721 |
The first few symmetric sixtuple constellations C(27, 6), even base case_
constellation | ||||||
---|---|---|---|---|---|---|
sixtuple prime 1 | 587 | 593 | 599 | 601 | 607 | 613 |
sixtuple prime 2 | 19457 | 19463 | 19469 | 19471 | 19477 | 19483 |
sixtuple prime 3 | 101267 | 101273 | 101279 | 101281 | 101287 | 101293 |
sixtuple prime 4 | 179807 | 179813 | 179819 | 179821 | 179827 | 179833 |
sixtuple prime 5 | 193367 | 193373 | 193379 | 193381 | 193387 | 193393 |
The first few symmetric sixtuple constellations with C(17, 6) are given here_
constellation | ||||||
---|---|---|---|---|---|---|
sixtuple prime 1 | 7 | 11 | 13 | 17 | 19 | 23 |
sixtuple prime 2 | 97 | 101 | 103 | 107 | 109 | 113 |
sixtuple prime 3 | 16057 | 16061 | 16063 | 16067 | 16069 | 16073 |
sixtuple prime 4 | 19417 | 19421 | 19423 | 19427 | 19429 | 19433 |
sixtuple prime 5 | 43777 | 43781 | 43783 | 43787 | 43789 | 43793 |
sixtuple prime 6 | 1091257 | 1091261 | 1091263 | 1091267 | 1091269 | 1091273 |
The first few symmetric seventuple constellations C(61, 7)_
constellation | |||||||
---|---|---|---|---|---|---|---|
seventuple 1 | 12003179 | 12003185 | 12003191 | 12003197 | 12003209 | 12003227 | 12003221 |
seventuple 2 | 14907619 | 14907625 | 14907631 | 14907637 | 14907649 | 14907667 | 14907661 |
seventuple 3 | 19755271 | 19755277 | 19755283 | 19755289 | 19755301 | 19755319 | 19755313 |
Centers of the last 3 10-tuple constellations C(47, 10)_
60 | 967352040 | 4407582630 |
Divisibility of symmetric sixtuple prime constellations - with C(29, 6)_
Parameter | val | val | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|---|---|
constellation | ||||||||||||
divisibility | 2 | 3 | 2 | 5 | 2, 3 | 2 | 3 | 2 | 2, 3 | |||
constellation | ||||||||||||
divisibility | 2 | 3, 5 | 2 | |||||||||
constellation | ||||||||||||
divisibility | 2, 3 | 2 | 2, 5 | 3 | 2 | 2, 3 | 5 | 2 | 3 | 2 |
Case_2: possible symmetric quintuple primes_
Parameter | val | val | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|---|---|
rel. index | −18 | −17 | 16 | −15 | −14 | −13 | −12 | −11 | −10 | −9 | −8 | −7 |
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | 2 | 2 | 2 | ||||||
rel. index | −6 | −5 | −4 | −3 | −2 | −1 | ||||||
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | |||||||||
rel. index | 0 | |||||||||||
center | ||||||||||||
prime | ||||||||||||
rel. index | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | |||||||||
rel. index | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | 2 | 2 | 2 |
Divisibility of symmetric octuple prime constellations_
Parameter | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|
rel. index | −19 | −18 | −17 | −16 | −15 | −14 | −13 | −12 | −11 | −10 |
constellation | ||||||||||
divis | 2, 3 | 2 | 3, 5 | 2, 7 | 2, 3 | 2, 5 | ||||
rel. index | −9 | −8 | −7 | −6 | −5 | −4 | −3 | −2 | −1 | 0 |
constellation | ||||||||||
divis | 3 | 2 | 7 | 2, 3 | 5 | 2 | 3 | 2 | ? | 2, 3, 5, 7 |
rel. index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
constellation | ||||||||||
divis | ? | 2 | 3 | 2 | 5 | 2, 3 | 7 | 2 | 3 | 2, 5 |
rel. index | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
constellation | ||||||||||
divis | 2, 3 | 2, 7 | 3, 5 | 2 | 2, 3 | 2, 5 |
Some Case_2 C(37, 5) 5-tuple symmetric primes_
constellation | |||||
---|---|---|---|---|---|
quintuple 1 | 18713 | 18719 | 18731 | 18743 | 18749 |
quintuple 2 | 25603 | 25609 | 25621 | 25633 | 25639 |
quintuple 3 | 28051 | 28057 | 28069 | 28081 | 28087 |
quintuple 4 | 31033 | 31039 | 31051 | 31063 | 31069 |
quintuple 5 | 97423 | 97429 | 97441 | 97453 | 97459 |
quintuple 6 | 103651 | 103657 | 103669 | 103681 | 103687 |
The two 10-tuples found up to 30 * 1010 with rel_ indices (−17, −13, −11, −1, 1, 11, 13, 17) when entries with indices (−19, 19) in the table in Figure 1 are composite_
10-tuple center | factors of center | entry index −1 | entry index +1 |
---|---|---|---|
30 | (2, 3, 5) | prime | composite |
113160 | (2(3), 3, 5, 23, 41) | composite | composite |
Possible symmetric quintuple prime C(25, 5)_
Parameter | val | val | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|---|---|
rel. index | −12 | −11 | −10 | −9 | −8 | −7 | −6 | −5 | −4 | −3 | −2 | −1 |
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | 2 | 2 | 2 | ||||||
rel. index | 0 | |||||||||||
center | ||||||||||||
prime | ||||||||||||
rel. index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
constellation | ||||||||||||
divisors/prime | 2 | 2 | 2 | 2 | 2 | 2 |
With rhe rel_ indices (−30, −18, −12, 0, 12, 18, 30) for possible symmetric seven-tuple prime constellations_
Parameter | val | val | val | val | val | val | val | val | val | val | val | val |
---|---|---|---|---|---|---|---|---|---|---|---|---|
rel. index | −30 | −29 | −28 | −27 | −26 | −25 | −24 | −23 | −22 | −21 | −20 | 19 |
constellation | ||||||||||||
rel. index | −18 | −17 | −16 | −15 | −14 | −13 | −12 | −11 | −10 | −9 | −8 | 7 |
constellation | ||||||||||||
rel. index | −6 | −5 | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 |
constellation | ||||||||||||
rel. index | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
constellation | ||||||||||||
rel. index | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
constellation | ||||||||||||
rel. index | 30 | |||||||||||
constellation |
Closest double prime to a constellation formed by a double prime pair_
sequence | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
divisors/prime | 2, 3 | 2 | 3, 5 | 2 | 2, 3 | 2, 5 | 3 | ||||
sequence | |||||||||||
divisors/prime | 2 | 2, 3 | 5 | 2 | 3 | 2 | 2, 3, 5 | 2 |
Divisibility of possible symmetric six-tuple prime constellation - C(15, 6)_ Even base case_
Parameter | value | value | value | value | value | value |
---|---|---|---|---|---|---|
constellation | ||||||
divisibility/prime | 2, 3 | 2 | 2 | |||
center | ||||||
constellation | 2, 3 | |||||
constellation | ||||||
divisibility/prime | 2 | 2 | 2 |
Divisibility of symmetric seventuple prime constellations C(61, 7)_
rel. index | −30 | −29 | −28 | −27 | −26 | −25 | −24 | −23 | −22 | −21 | −20 | 19 |
constellation | ||||||||||||
divisibility | 2, 3 | 2 | 3 | 2 | 2, 3 | 2 | 3 | 2 | ||||
rel. index | −18 | −17 | −16 | −15 | −14 | −13 | −12 | −11 | −10 | −9 | −8 | 7 |
constellation | ||||||||||||
divisibility | 2, 3 | 2 | 3 | 2 | 2, 3 | 2 | 3 | 2 | ||||
rel. index | −6 | −5 | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 |
constellation | ||||||||||||
divisibility | 2, 3 | 2 | 3 | 2 | 2, 3 | 2 | 3 | 2 | ||||
rel. index | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
constellation | ||||||||||||
divisibility | 2, 3 | 2 | 3 | 2 | 2, 3 | 2 | 3 | 2 | ||||
rel. index | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
constellation | ||||||||||||
divisibility | 2, 3 | 2 | 3 | 2 | 2, 3 | 2 | 3 | 2 | ||||
rel. index | 30 | |||||||||||
constellation | ||||||||||||
divisibility |