Accès libre

Odd and even symmetric prime constellations

  
20 sept. 2024
À propos de cet article

Citez
Télécharger la couverture

Fig. 1

Expanded Table 1.
Expanded Table 1.

Fig. 2

Divisibility relative to center prime - odd case - rel. index −1 divisible by 3.
Divisibility relative to center prime - odd case - rel. index −1 divisible by 3.

Fig. 3

Divisibility relative to center prime - odd case - rel. index 1 divisible by 3.
Divisibility relative to center prime - odd case - rel. index 1 divisible by 3.

Fig. 4

Divisibility relative to composite center - even base case.
Divisibility relative to composite center - even base case.

Fig. 5

Divisibility relative to composite center - even second case.
Divisibility relative to composite center - even second case.

Fig. 6

Proof of impossibility of suggestion for Table 20.
Proof of impossibility of suggestion for Table 20.

Fig. 7

Complete table for the first 10-tuple.
Complete table for the first 10-tuple.

Fig. 8

Table for a possible 16-tuple based on octuples.
Table for a possible 16-tuple based on octuples.

Potential triple prime, C(13, 3)_

Parameter val val val val val val val val val val val val val

rel. index −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
constellation p1 e1 c1 e2 c2 e3 p2 e4 c3 e5 c4 e6 p3
divisors/prime P 2 C 2 C 2 P 2 C 2 C 2 P

The first few symmetric sixtuple constellations, third case, are given with C(29, 6)_

constellation p1 p2 p3 p4 p5 p6

sixtuple prime 1 151 157 163 167 173 179
sixtuple prime 2 20101 20107 20113 20117 20123 20129
sixtuple prime 3 128461 128467 128473 128477 128483 128489
sixtuple prime 4 297601 297607 297613 297617 297623 297629
sixtuple prime 5 350431 350437 350443 350447 350453 350459
sixtuple prime 6 354301 354307 354313 354317 354323 354329
sixtuple prime 7 531331 531337 531343 531347 531353 531359

The three 10-tuples found with rel_ indices (−19, −17, −13, −11, −1, 1, 11, 13, 17, 19) when entries with indices (−7, 7) in the table in Figure 1 are composite_

10-tuple center factors of center entry index −7 entry index +7
39713433690 (2, 3, 5, 7, 23, 8222243) composite composite
66419473050 (2, (3, 2), (5, 2), (7, 2), 3012221) composite composite
71525244630 (2, 3, 5, (7, 3), 6950947) composite composite

The four 10-tuples found when rel_ indices (−19, −17, −13, −11, −7, 7, 11, 13, 17, 19) are specified with (−1, 1) in the table in Figure 1 being composite_

10-tuple center factors of center entry index −1 entry index +1
30 (2, 3, 5) composite composite
1864508550 (2, 3, 5, 5, 241, 151577) composite composite
4763132670 (2, 3, 5, 7193, 22073) composite composite
5302859550 2, 3, 5, 5, 167, 211691 composite composite

First and last computed cases for constellation in Table 23_

Parameter value value value value value value value value

first case p1 p2 p3 p4 p5 p6 p7 p8
344231 344237 344243 344251 344253 344259 344263 344267

last case p1 p2 p3 p4 p5 p6 p7 p8
944554301 944554307 944554313 944554321 944554323 944554329 944554333 944554337

The first 10-tuple C(39, 10) prime constellation, center c = 39713433690_

rel. index −19 −17 −13 −11 −1
prime p1 p2 p3 p4 p5
value 39713433671 39713433673 39713433677 39713433679 39713433689
rel. index 1 11 13 17 19
prime p6 p7 p8 p9 p10
value 39713433691 39713433701 39713433703 39713433707 39713433709

Triple prime (47, 53, 59) with m = 13_

Parameter val val val val val val val val val val val val val

constellation 47 48 49 50 51 52 53 54 55 56 57 58 59
factors 47 24 * 3 77 2 * 52 3 * 17 22 * 13 53 2 * 33 5 * 11 23 * 7 3 * 19 2 * 29 59

Summarizing the even symmetric constellations, smallest extent so far_

configurations value of m number of cases m is minimal ? comment
2-tuples (double primes) 3 no limit YES obvious extensively studied
4-tuples (quadruple primes) 9 166 cases up to 107 YES as shown in section 4.
6-tuples (sixtuple primes) 17 18 cases up to 107 YES as shown in section 6 The cases with m < 17 were shown to be not possible using divisibility by 2, 3, 5, 7.
8-tuples (octuple primes) 27 28 cases up to 1010 Not verified The cases with m = 27 have the smallest extent found so far
10-tuples 35 2 cases up to 1010 Not verified The cases with m = 35 were the minimal extent found so far

Some 4-tuple symmetric primes, C(9, 4)_

constellations p1 p2 p3 p4 q

quadruple prime, special case 1 5 7 11 13 9
quadruple prime 2 11 13 17 19 15
quadruple prime 3 101 103 107 109 105
quadruple prime 4 191 193 197 199 195
quadruple prime 5 821 823 827 829 825
quadruple prime 6 1481 1483 1487 1489 1485
quadruple prime 7 1871 1873 1877 1879 1875

9-tuple prime, C(120, 9)_

Parameter value value value value

constellation p1 p2 p3 p4
location c − 60 c − 42 c − 30 c − 18
divisors/prime 12383210011 12383210029 12383210041 12383210053

center p5
location c
prime 12383210071

constellation p6 p7 p8 p9
location c + 18 c + 30 c + 42 c + 60
divisors/prime 12383210089 12383210101 12383210113 12383210131

Divisibility of symmetric sixtuple prime constellations with C(27, 6), even base case_

Parameter val val val val val val val val val val val val

rel. index −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2
constellation p1 e1 c1 e2 c2 e3 p2 e4 c3 e5 c4 e6
divisibility prime 2, 3 2, 5 3 2 prime 2, 3 5 2 3 2

rel. index −1 0 1
constellation p3 e7 p4
divisibility prime 2, 3, 5 prime

rel. index 2 3 4 5 6 7 8 9 10 11 12 13
constellation e8 c5 e9 c6 e10 p5 e11 c7 e12 c8 e13 p6
divisibility 2 3 2 5 2, 3 prime 2 3 2, 5 2, 3 prime

Centers of the 5 10-tuple constellations C(47, 10)_

90 1011208680 2233694520 4143953640 6486125010

Divisibility of symmetric octuple prime constellation - second case_

Parameter val val val val val val val val val val val val

rel. index −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8
constellation p1 e1 c1 e2 c2 e3 p2 e4 c3 e5 c4 e6
divis prime 2, 3 ? 2 3, 5 2 prime 2, 3 ? 2, 5 3 2

rel. index −7 −6 −5 −4 −3 −2
constellation p3 e7 c5 e8 c6 e9
divis prime 2 5 2 3 2

rel. index −1 0 1
constellation p4 e10 p5
divis prime 2, 3, 5 prime

rel. index 2 3 4 5 6 7
constellation e11 c7 e12 c8 e13 p6
divis 2 3 2 5 2, 3 prime

rel. index 8 9 10 11 12 13 14 15 16 1 18 19
constellation e14 c9 e15 c10 e16 p7 e17 c11 e18 c12 e19 p8
divis 2 3 2, 5 ? 2, 3 prime 2 3, 5 2 ? 2, 3 prime

The first few symmetric eight-tuple constellations C(27, 8) with rel_ indices at (−13, −11, −7, −1, 1, 7, 11, 13)_

constellation p1 p2 p3 p4 p5 p6 p7 p8

eight-tuple 1 17 19 23 29 31 37 41 43
eight-tuple 2 1277 1279 1283 1289 1291 1297 1301 1303
eight-tuple 3 113147 113149 113153 113159 113161 113167 113171 113173
eight-tuple 4 2580647 2580649 2580653 2580659 2580661 2580667 2580671 2580673
eight-tuple 5 20737877 20737879 20737883 20737889 20737891 20737897 20737901 20737903

Summarizing the odd symmetric constellations, smallest extent so far_

constellations value of m number of cases is minimal ? comment
3-tuples (triple primes) 13 758163 up to 109 YES by construction m = 7, 11 not possible by symmetry, m = 5, 7 not possible by construction
5-tuples (qunintuple primes) 37 124 up to 107 YES as shown in section 5 The cases with m < 37 were shown to be not possible using Theorem 3
7-tuples (qunintuple primes) 73 124 up to 109 NO
9-tuples 121 124 up to 2 * 1010 NO 121 is the smallest extent found so far

Case_1: possible symmetric quintuple prime_

Parameter val val val val val val val val val val val val

rel. index −18 −17 16 −15 −14 −13 −12 −11 −10 −9 −8 −7
constellation p1 e1 c1 e2 c2 e3 c3 e4 c4 e5 c5 e6
divisors/prime prime 2 2 2 2 2 2

rel. index −6 −5 −4 −3 −2 −1
constellation p2 e7 c6 e8 c7 e9
divisors/prime prime 2 2 2

rel. index 0
center p3
prime prime

rel. index 1 2 3 4 5 6
constellation e10 c8 e11 c9 e12 p4
divisors/prime 2 2 2 prime

rel. index 7 8 9 10 11 12 13 14 15 16 17 18
constellation e13 c10 e14 c11 e15 c12 e16 c13 e17 c14 e18 p5
divisors/prime 2 2 2 2 2 2 prime

Divisibility of symmetric 4-tuple prime C(3, 9) by 2, 3 and 5_

Parameter value value value value value value value value value

rel. index −4 −3 −2 −1 0 1 2 3 4
constellation p1 e1 p2 e2 c e3 p3 e4 p4
divisors/prime P 2, 3 P 2 3, 5 2 P 2, 3 P

Divisibility of symmetric six-tuple prime constellations - C(17, 6)_ Center configuration is even second case p3, e4, c2, e5, p4_

Parameter value value value value value value

rel. index −8 −7 −6 −5 −4 −3
constellation p1 e1 c1 e2 p2 e3
divisibility/prime prime 2, 3, 7 2, 5 prime 2

center p3 e4 c2 e5 p4
rel. index −2 −1 0 1 2
constellation prime 2, 3 3, 5, 7 2 prime

rel. index 3 4 5 6 7 8
constellation e6 p5 e7 c3 e8 p6
divisibility/prime 2 prime 2, 3, 7 2 prime

Potential triple prime, C(9, 3)_

Parameter value value value value value value value value value

rel. index −4 −3 −2 −1 0 1 2 3 4
constellation p1 e1 c1 e2 p2 e3 c2 e4 p3
divisors/prime P 2 C 2 P 2 C 2 P

The first few examples of computations according to Table 1_

The pair of double primes. p1 p2 p3 p4

The next double primes. c6 c7

sequence 1 11 13 17 19 29 31
sequence 2 18041 18043 18047 18049 18059 18061
sequence 3 97841 97843 97847 97849 97859 97861
sequence 4 165701 165703 165707 165709 165719 165721
sequence 5 392261 392263 392267 392269 392279 392281
sequence 6 663581 663583 663587 663589 663599 663601
sequence 7 1002341 1002343 1002347 1002349 1002359 1002361
sequence 8 1068701 1068703 1068707 1068709 1068719 1068721

The first few symmetric sixtuple constellations C(27, 6), even base case_

constellation p1 p2 p3 p4 p5 p6

sixtuple prime 1 587 593 599 601 607 613
sixtuple prime 2 19457 19463 19469 19471 19477 19483
sixtuple prime 3 101267 101273 101279 101281 101287 101293
sixtuple prime 4 179807 179813 179819 179821 179827 179833
sixtuple prime 5 193367 193373 193379 193381 193387 193393

The first few symmetric sixtuple constellations with C(17, 6) are given here_

constellation p1 p2 p3 p4 p5 p6

sixtuple prime 1 7 11 13 17 19 23
sixtuple prime 2 97 101 103 107 109 113
sixtuple prime 3 16057 16061 16063 16067 16069 16073
sixtuple prime 4 19417 19421 19423 19427 19429 19433
sixtuple prime 5 43777 43781 43783 43787 43789 43793
sixtuple prime 6 1091257 1091261 1091263 1091267 1091269 1091273

The first few symmetric seventuple constellations C(61, 7)_

constellation p1 p2 p3 p4 p5 p6 p7

seventuple 1 12003179 12003185 12003191 12003197 12003209 12003227 12003221
seventuple 2 14907619 14907625 14907631 14907637 14907649 14907667 14907661
seventuple 3 19755271 19755277 19755283 19755289 19755301 19755319 19755313

Centers of the last 3 10-tuple constellations C(47, 10)_

60 967352040 4407582630

Divisibility of symmetric sixtuple prime constellations - with C(29, 6)_

Parameter val val val val val val val val val val val val

constellation p1 e1 c1 e2 c2 e3 p2 e4 c3 e5 c4 e6
divisibility prime 2 3 2 5 2, 3 prime 2 3 2 2, 3

constellation p3 e7 c5 e8 p4
divisibility prime 2 3, 5 2

constellation e9 c6 e10 c7 e11 p5 e12 c8 e13 c9 e14 p6
divisibility 2, 3 2 2, 5 3 2 prime 2, 3 5 2 3 2 prime

Case_2: possible symmetric quintuple primes_

Parameter val val val val val val val val val val val val

rel. index −18 −17 16 −15 −14 −13 −12 −11 −10 −9 −8 −7
constellation p1 e1 c1 e2 c2 e3 p2 e4 c3 e5 c4 e6
divisors/prime prime 2 2 2 prime 2 2 2

rel. index −6 −5 −4 −3 −2 −1
constellation c5 e7 c6 e8 c7 e9
divisors/prime 2 2 2

rel. index 0
center p3
prime prime

rel. index 1 2 3 4 5 6
constellation e10 c8 e11 c9 e12 c10
divisors/prime 2 2 2

rel. index 7 8 9 10 11 12 13 14 15 16 17 18
constellation e13 c11 e14 c12 e15 p4 e16 c13 e17 c14 e18 p5
divisors/prime 2 2 2 prime 2 2 2 prime

Divisibility of symmetric octuple prime constellations_

Parameter val val val val val val val val val val

rel. index −19 −18 −17 −16 −15 −14 −13 −12 −11 −10
constellation p1 e1 p2 e2 c1 e3 p3 e4 p4 e5
divis prime 2, 3 prime 2 3, 5 2, 7 prime 2, 3 prime 2, 5

rel. index −9 −8 −7 −6 −5 −4 −3 −2 −1 0
constellation c2 e6 c3 e7 c4 e8 c5 e9 c6 e10
divis 3 2 7 2, 3 5 2 3 2 ? 2, 3, 5, 7

rel. index 1 2 3 4 5 6 7 8 9 10
constellation c7 e11 c8 e12 c9 e13 c10 e14 c11 e15
divis ? 2 3 2 5 2, 3 7 2 3 2, 5

rel. index 11 12 13 14 15 16 17 18 19 20
constellation p5 e16 p6 e17 c12 e18 p7 e19 p8 e20
divis prime 2, 3 prime 2, 7 3, 5 2 prime 2, 3 prime 2, 5

Some Case_2 C(37, 5) 5-tuple symmetric primes_

constellation p1 p2 p3 p4 p5

quintuple 1 18713 18719 18731 18743 18749
quintuple 2 25603 25609 25621 25633 25639
quintuple 3 28051 28057 28069 28081 28087
quintuple 4 31033 31039 31051 31063 31069
quintuple 5 97423 97429 97441 97453 97459
quintuple 6 103651 103657 103669 103681 103687

The two 10-tuples found up to 30 * 1010 with rel_ indices (−17, −13, −11, −1, 1, 11, 13, 17) when entries with indices (−19, 19) in the table in Figure 1 are composite_

10-tuple center factors of center entry index −1 entry index +1
30 (2, 3, 5) prime composite
113160 (2(3), 3, 5, 23, 41) composite composite

Possible symmetric quintuple prime C(25, 5)_

Parameter val val val val val val val val val val val val

rel. index −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1
constellation p1 e1 c1 e2 c2 e3 p2 e4 c3 e5 c4 e6
divisors/prime prime 2 2 2 prime 2 2 2

rel. index 0
center p3
prime prime

rel. index 1 2 3 4 5 6 7 8 9 10 11 12
constellation e7 c5 e8 c6 e9 p4 e10 c7 e11 c8 e12 p5
divisors/prime 2 2 2 prime 2 2 2 prime

With rhe rel_ indices (−30, −18, −12, 0, 12, 18, 30) for possible symmetric seven-tuple prime constellations_

Parameter val val val val val val val val val val val val

rel. index −30 −29 −28 −27 −26 −25 −24 −23 −22 −21 −20 19
constellation p1 e1 c1 e2 c2 e3 c3 e4 c4 e5 c5 e6

rel. index −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 7
constellation p2 e7 c6 e8 c7 e9 p3 e10 c8 e11 c9 e12

rel. index −6 −5 −4 −3 −2 −1 0 1 2 3 4 5
constellation c10 e13 c11 e14 c12 e15 p4 e16 c13 e17 c14 e18

rel. index 6 7 8 9 10 11 12 13 14 15 16 17
constellation c15 e19 c16 e20 c17 e21 p5 e22 c18 e23 c19 e24

rel. index 18 19 20 21 22 23 24 25 26 27 28 29
constellation p6 e25 c20 e26 c21 e27 c22 e28 c23 e29 c24 e30

rel. index 30
constellation p7

Closest double prime to a constellation formed by a double prime pair_

sequence p1 d1 p2 e1 c1 e2 p3 d2 p4 e3 c2
divisors/prime prime 2, 3 prime 2 3, 5 2 prime 2, 3 prime 2, 5 3
sequence e4 c3 e5 c4 e6 c5 e7 c6 e8 c7 e9
divisors/prime 2 2, 3 5 2 3 2 2, 3, 5 2

Divisibility of possible symmetric six-tuple prime constellation - C(15, 6)_ Even base case_

Parameter value value value value value value

constellation p1 e1 p2 e2 c1 e3
divisibility/prime prime 2, 3 prime 2 2

center p3 e4 p4
constellation prime 2, 3 prime

constellation e5 c2 e6 p5 e7 p6
divisibility/prime 2 2 prime 2 prime

Divisibility of symmetric seventuple prime constellations C(61, 7)_

rel. index −30 −29 −28 −27 −26 −25 −24 −23 −22 −21 −20 19
constellation p1 e1 c1 e2 c2 e3 c3 e4 c4 e5 c5 e6
divisibility prime 2, 3 2 3 2 2, 3 2 3 2
rel. index −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 7
constellation p2 e7 c6 e8 c7 e9 p3 e10 c8 e11 c9 e12
divisibility prime 2, 3 2 3 2 prime 2, 3 2 3 2
rel. index −6 −5 −4 −3 −2 −1 0 1 2 3 4 5
constellation c10 e13 c11 e14 c12 e15 p4 e16 c13 e17 c14 e18
divisibility 2, 3 2 3 2 prime 2, 3 2 3 2
rel. index 6 7 8 9 10 11 12 13 14 15 16 17
constellation c15 e19 c16 e20 c17 e21 p5 e22 c18 e23 c19 e24
divisibility 2, 3 2 3 2 prime 2, 3 2 3 2
rel. index 18 19 20 21 22 23 24 25 26 27 28 29
constellation p6 e25 c20 e26 c21 e27 c22 e28 c23 e29 c24 e30
divisibility prime 2, 3 2 3 2 2, 3 2 3 2
rel. index 30
constellation p7
divisibility prime