Otwarty dostęp

A numerical approach for an epidemic SIR model via Morgan-Voyce series


Zacytuj

Introduction

As the ordinary differential system of equations is considerably used to explain mathematical properties, they are used to represent the real-world problems arising in the field of science such as biology, physics, engineering, finance, or sociology. It is well-known that many models in these areas can be described by using a system of ordinary differential equations. Analytically, it is generally very hard or impossible to solve these models. Moreover, as the exact solutions of these models cannot be found, we need to use the numerical methods to find approximate solutions. Many researchers used methods for solving such equations. Hojjati et al. [1] investigated the multistep method. Mastorakis [2] presented the collocation method. Shawagfed et al. [3] proposed the Adomian decomposition method. While Yüzbaşı ve Karaçayır [4] handled the Galerkin method, Yüzbaşı [5] proposed the exponential collocation method. Al-Omari et al. [6] used the Galerkin finite element method to observe numerical properties of models.

In modern times, many experts studied the epidemic models. Iwa et al. studied malaria and cholera models by using the Caputo-Fabrizio derivative of order a ∈ (0,1) varied with some notable parameters in the fractional system [7]. Atede et al. considered a fractional-order vaccination model for the novel Coronavirus 2019 (COVID-19) incorporating environmental transmission and analyzed using tools of fractional calculus [8]. Joshi et al. proposed a non-singular SIR model with the Mittag-Leffler law [9]. Odionyenma et al. investigated the fractional derivative model of Chlamydia-Gonorrhea co-infection via Caputo derivative [10]. Sabbar proposed an epidemic model with three intervention measures: media coverage, isolation, and medical therapy [11]. Joshi and Yavuz presented the fractional-order coinfection model for the transmission dynamics of COVID-19 and tuberculosis [12].

This paper considers the SIR model being an epidemic model. This model is used to study the spread of infectious diseases in a population. Unlike the SIR model, there is an additional factor for vaccination. In a vaccination-inclusive model, controlling the epidemic can be achieved by forecasting its future direction. Because biologists can use it to deal with natural initial conditions to design and conduct experiments in observing the spreading of diseases, with the help of these experiments and modeling, the way of controlling the spreading of the epidemic can be learned. Getting exact solutions for the problems representing such natural events is extremely difficult. Searching for convenient methods is an excellent mission for the science community.

The SIR model is composed of three members: those who are susceptible to disease, those who might be infected with the disease, and those who recovered from or become immune to it. Kermack and McKendrick earlier [13] discovered the SIR model.

Rachah and Torres improved the SIR model [14]. They expressed the susceptible-infectious-recovery (SIR) model with vaccination and the initial conditions as follows, dSdt=βStItνS(t)dIdt=βStItγI(t)dRdt=γIt+νS(t) \[\begin{align} & \frac{dS}{dt}=-\beta S\left( t \right)I\left( t \right)-\nu S(t) \\ & \frac{dI}{dt}=\beta S\left( t \right)I\left( t \right)-\gamma I(t) \\ & \frac{dR}{dt}=\gamma I\left( t \right)+\nu S(t) \\ \end{align}\] with initial conditions given by S(0)=NS,I(0)=NI,R0=NR \[S(0)={{N}_{S}},\ I(0)={{N}_{I}},\ R\left( 0 \right)={{N}_{R}}\] where ν is the percentage of individuals vaccinated every day [15].

NS= The number of susceptible people in the population at t time.

NI = The number of infected people in the population at t time.

NR = The number of recovered people in the population at t time.

N = The size of the population.

β = Transmissivity rate.

γ = Recovery rate.

A person can only be in one of the three groups in any time.

NS+NI+NR=N. \[{{N}_{S}}+{{N}_{I}}+{{N}_{R}}=N.\]

Recently, some researchers have analyzed the SIR model using various methods to obtain an approximate solution. Argub and El-Ajou [16] applied the Homotopy analysis method for different parameter values for the SIR model. Biazar [17] presented the Adomian decomposition method. While Rafai et al. [18] studied the homotopy perturbation method, İbrahim and Ismail [19] used a differential transformation approach. This model was also solved using the Laplace-Adomian decomposition method [20]. Harman ve Johnston [21] solved by using the stochastic Galerkin method. This epidemic model was solved by Kousar et al. [22] by using the 4th-order Runge Kutta method. It was also solved by the Hussain et al. [23] Runge Kutta-2 ve Runge Kutta-4 methods. Kousar solved this problem via the Euler method [22].

In this paper, the solutions of the SIR model have been found using the Morgan-Voyce collocation method (M-VCM). Many researchers have recently utilized the collocation method to solve this differential equation. Taylor [24,25,26,27,28], Pell-Lucas [ 29], Morgan-Voyce [ 30,31,32,33,34], Dickson [35], ortho-exponential [36], and Bernoulli [37] matrix methods have been used to solve the linear differential, integro-differential equations, fractional differential equations [38], nonlinear differential equations, multi-pantograph [39], delay differential equations and difference and Fredholm integro-difference equation [40]. This method can significantly aid in reducing the complexity of solutions for large-scale epidemic models and can contribute to obtaining results that closely approximate the exact solutions of ordinary differential equation systems.

This study is organized as follows. Section 2 describes the method. We give the error estimation of the method in Section 3. Several applications are provided in Section 4. Finally, we introduce the results of this paper in Conclusion 5.

The Morgan-Voyce collocation method

This section presents the M-VCM in clear. This method is used to obtain the approximate solution of the equation (1). Equation (1) is expressed in the truncated Morgan-Voyce series form as follows, S(t)=l=0LA1,lBl(t),I(t)=l=0LA2,lBl(t),R(t)=l=0LA3,lBl(t). \[S(t)=\overset{L}{\mathop{\underset{l=0}{\mathop{\sum{}}}\,}}\,{{A}_{1,l}}{{B}_{l}}(t),\ I(t)=\overset{L}{\mathop{\underset{l=0}{\mathop{\sum{}}}\,}}\,{{A}_{2,l}}{{B}_{l}}(t),\ R(t)=\overset{L}{\mathop{\underset{l=0}{\mathop{\sum{}}}\,}}\,{{A}_{3,l}}{{B}_{l}}(t).\]

Here, A1,l, A2,l and A3,l (l = 0, 1, 2, · , L) are the unknown Morgan-Voyce coefficients, L is an arbitrary positive integer such as (L ≥ 2). Swamy earlier defined the Morgan-Voyce polynomials (Bl(t), (l = 0, 1, 2, · , L)) [41]. Bl(t), (l = 0, 1, 2, · , L) are presented by, BL(t)=Lk=0L+k+1Lktk. \[{{B}_{L}}(t)=\underset{k=0}{\mathop{\overset{L}{\mathop{\sum{}}}\,}}\,\left( \begin{matrix} L+k+1 \\ L-k \\\end{matrix} \right){{t}^{k}}.\ \ \ \]

To write equation (1) in matrix form, we can first write the approximate solutions as follows, S(t)=B(t)A1,I(t)=B(t)A2,R(t)=B(t)A3, \[S(t)=B(t){{A}_{1}},\ I(t)=B(t){{A}_{2}},\ R(t)=B(t){{A}_{3}},\] where, B(t)=[B1(t)B2(t)BL1(t)BL(t)],A1=[a1,0a1,1a1,L]T,A2=[a2,0a2,1a2,L]T,A3=[a3,0a3,1a3,L]T,BT(t)=[ B0(t)B1(t)B2(t)BL(t) ]=[(10)000(21)(30)00(32)(41)(50 )0(L+1L )(L+2L1 )(L+3L2 )(2L+10 ) ][1tt2 tn ], \[\begin{gathered} B(t) = \left[ {\begin{array}{*{20}c} {B_1 (t)} \hfill & {B_2 (t)} \hfill & \cdots \hfill & {B_{L - 1} (t)} \hfill & {B_L (t)} \hfill \\ \end{array} } \right],\;A_1 = \left[ {\begin{array}{*{20}c} {a_{1,0} } \hfill & {a_{1,1} } \hfill & \cdots \hfill & {a_{1,L} } \hfill \\ \end{array} } \right]^T , \hfill \\ A_2 = \left[ {\begin{array}{*{20}c} {a_{2,0} } \hfill & {a_{2,1} } \hfill & \cdots \hfill & {a_{2,L} } \hfill \\ \end{array} } \right]^T ,\;A_3 = \left[ {\begin{array}{*{20}c} {a_{3,0} } \hfill & {a_{3,1} } \hfill & \cdots \hfill & {a_{3,L} } \hfill \\ \end{array} } \right]^T , \hfill \\ B^T (t) = \left[ {\begin{array}{*{20}c} {B_0 (t)} \hfill \\ {B_1 (t)} \hfill \\ {B_2 (t)} \hfill \\ \vdots \hfill \\ {B_L (t)} \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \right)} & 0 & 0 & \cdots & 0 \\ {\left( {\begin{array}{*{20}c} 2 \\ 1 \\ \end{array} } \right)} & {\left( {\begin{array}{*{20}c} 3 \\ 0 \\ \end{array} } \right)} & 0 & \cdots & 0 \\ {\left( {\begin{array}{*{20}c} 3 \\ 2 \\ \end{array} } \right)} & {\left( {\begin{array}{*{20}c} 4 \\ 1 \\ \end{array} } \right)} & {\left( {\begin{array}{*{20}c} 5 \\ 0 \\ \end{array} } \right)} & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ {\left( {\begin{array}{*{20}c} {L + 1} \\ L \\ \end{array} } \right)} & {\left( {\begin{array}{*{20}c} {L + 2} \\ {L - 1} \\ \end{array} } \right)} & {\left( {\begin{array}{*{20}c} {L + 3} \\ {L - 2} \\ \end{array} } \right)} & \cdots & {\left( {\begin{array}{*{20}c} {2L + 1} \\ 0 \\ \end{array} } \right)} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 1 \\ t \\ {t^2 } \\ \vdots \\ {t^n } \\ \end{array} } \right], \hfill \\ \end{gathered} \] here we can write, F(t)=1tt2tL,R=100002130003241500L+1LL+2L1L+3L22L+10. \[F(t)=\left[ \begin{array}{*{35}{l}} 1 & t & {{t}^{2}} & \cdots & {{t}^{L}} \\\end{array} \right],\,R\ =\left[ \begin{matrix} \left( \begin{matrix} 1 \\ 0 \\\end{matrix} \right) & 0 & 0 & \cdots & 0 \\ \left( \begin{matrix} 2 \\ 1 \\\end{matrix} \right) & \left( \begin{matrix} 3 \\ 0 \\\end{matrix} \right) & 0 & \cdots & 0 \\ \left( \begin{matrix} 3 \\ 2 \\\end{matrix} \right) & \left( \begin{matrix} 4 \\ 1 \\\end{matrix} \right) & \left( \begin{matrix} 5 \\ 0 \\\end{matrix} \right) & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \left( \begin{matrix} L+1 \\ L \\\end{matrix} \right) & \left( \begin{matrix} L+2 \\ L-1 \\\end{matrix} \right) & \left( \begin{matrix} L+3 \\ L-2 \\\end{matrix} \right) & \cdots & \left( \begin{matrix} 2L+1 \\ 0 \\\end{matrix} \right) \\\end{matrix} \right].\]

Therefore, we can write the following equations, S(t)=F(t)RTA1,I(t)=F(t)RTA2,R(t)=F(t)RTA3. \[S(t)=F(t){{R}^{T}}{{A}_{1}},\ I(t)=F(t){{R}^{T}}{{A}_{2}},\ R(t)=F(t){{R}^{T}}{{A}_{3}}.\]

The relationship between matrix F(t) and its derivative matrix F(1)(t) is as follows, F(1)(t)=F(t)TT \[{{F}^{(1)}}(t)=F(t){{T}^{T}}\] and here, TT=01000020000L0000. \[{{T}^{T}}=\left[ \begin{array}{*{35}{l}} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & L \\ 0 & 0 & 0 & \cdots & 0 \\\end{array} \right].\]

From equations (4) and (5), we can get the following equations, S(1)(t)=F(t)TTRTA1,I(1)(t)=F(t)TTRTA2,R(1)(t)=F(t)TTRTA3. \[{{S}^{(1)}}(t)=F(t){{T}^{T}}{{R}^{T}}{{A}_{1}},\ {{I}^{(1)}}(t)=F(t){{T}^{T}}{{R}^{T}}{{A}_{2}},\ {{R}^{(1)}}(t)=F(t){{T}^{T}}{{R}^{T}}{{A}_{3}}.\]

Thus, we can obtain the matrices y(t) and y(1)(t) as follows, y(t)=F¯R¯A,y1(t)=F¯T¯R¯A, \[y(t)=\overline{F}\overline{R}A,\ {{y}^{1}}(t)=\overline{F}\overline{T}\overline{R}A,\] where, y(t)=S(t)I(t)R(t),y(1)(t)=S(1)(t)I(1)(t)R(1)(t),F¯(t)=F(t)000F(t)000F(t),T¯=TT000TT000TT, \[y(t)=\left[ \begin{matrix} S(t) \\ I(t) \\ R(t) \\\end{matrix} \right],\ {{y}^{(1)}}(t)=\left[ \begin{matrix} {{S}^{(1)}}(t) \\ {{I}^{(1)}}(t) \\ {{R}^{(1)}}(t) \\\end{matrix} \right],\ \overline{F}(t)=\left[ \begin{matrix} F(t) & 0 & 0 \\ 0 & F(t) & 0 \\ 0 & 0 & F(t) \\\end{matrix} \right],\ \overline{T}=\left[ \begin{matrix} {{T}^{T}} & 0 & 0 \\ 0 & {{T}^{T}} & 0 \\ 0 & 0 & {{T}^{T}} \\\end{matrix} \right],\] and, R¯=RT000RT000RT,A=A1A2A3. \[\overline{R}=\left[ \begin{matrix} {{R}^{T}} & 0 & 0 \\ 0 & {{R}^{T}} & 0 \\ 0 & 0 & {{R}^{T}} \\\end{matrix} \right],\ A=\left[ \begin{matrix} {{A}_{1}} \\ {{A}_{2}} \\ {{A}_{3}} \\\end{matrix} \right].\]

Equation (1) can be written in matrix form as follows, y1(t)Dy(t)Ny(t)Ey1,2(t)=g, \[{{y}^{1}}(t)-Dy(t)-Ny(t)-E{{y}_{1,2}}(t)=g,\] where, g=000,D=0000γ00γ0,E=ββ0,N=ν00000ν00,y1,2=S(t)I(t). \[g=\left[ \begin{matrix} 0 \\ 0 \\ 0 \\\end{matrix} \right],\ D=\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -\gamma & 0 \\ 0 & \gamma & 0 \\\end{matrix} \right],\ E=\left[ \begin{matrix} -\beta \\ \beta \\ 0 \\\end{matrix} \right],\ N=\left[ \begin{matrix} -\nu & 0 & 0 \\ 0 & 0 & 0 \\ \nu & 0 & 0 \\\end{matrix} \right],\ {{y}_{1,2}}=\left[ S(t)I(t) \right].\]

Now, to determine the unknown coefficients of A1,I, A2,I and A3,I, we can define the collocation points for the interval a ≤ t ≤ b as follows, ti=a+baLi,i=0,1,,L. \[{{t}_{i}}=a+\frac{b-a}{L}i,\ \ \ i=0,\ 1,\ \cdots ,\ L.\]

Substituting the collocation points in equation (6), we get the following system, y(1)(ti)Dy(ti)Ny(ti)Ey1,2(ti)=g, \[{{y}^{(1)}}({{t}_{i}})-Dy({{t}_{i}})-Ny({{t}_{i}})-E{{y}_{1,2}}({{t}_{i}})=g,\] where, y(ti)=F¯(ti)R¯A, \[y({{t}_{i}})=\overline{F}({{t}_{i}})\overline{R}A,\] y(1)(ti)=F¯(ti)T¯R¯A, \[{{y}^{(1)}}({{t}_{i}})=\overline{F}({{t}_{i}})\overline{T}\overline{R}A,\] here, F=F¯(t0)F¯(t1)F¯(tL)T,F¯(ti)=F(ti)000F(ti)000F(ti). \[F={{\left[ \begin{matrix} \overline{F}({{t}_{0}}) & \overline{F}({{t}_{1}}) & \cdots & \overline{F}({{t}_{L}}) \\\end{matrix} \right]}^{T}},\ \overline{F}({{t}_{i}})=\left[ \begin{matrix} F({{t}_{i}}) & 0 & 0 \\ 0 & F({{t}_{i}}) & 0 \\ 0 & 0 & F({{t}_{i}}) \\\end{matrix} \right].\]

So, equation (1) can be written in the following matrix form utilizing the upper matrices, Y(1)D¯YN¯YE¯Y¯˜=G, \[{{Y}^{(1)}}-\overline{D}Y-\overline{N}Y-\overline{E}\widetilde{\overline{Y}}=G,\] where, Y(1)=y(1)(t0)y(1)(t1)y(1)(tL),D¯=D000D000D(L+1)(L+1),N¯=N000N000N(L+1)(L+1),Y=y(t0)y(t1)y(tL),G=ggg(L+1)1,Y¯˜=y1,2(t0)y1,2(t1)y1,2(tL),E¯=E000E000E(L+1)(L+1). \[\begin{align} & {{Y}^{(1)}}=\left[ \begin{matrix} {{y}^{(1)}}({{t}_{0}}) \\ {{y}^{(1)}}({{t}_{1}}) \\ \vdots \\ {{y}^{(1)}}({{t}_{L}}) \\\end{matrix} \right],\ \overline{D}={{\left[ \begin{matrix} D & 0 & \cdots & 0 \\ 0 & D & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D \\\end{matrix} \right]}_{(L+1)(L+1)}},\ \overline{N}={{\left[ \begin{matrix} N & 0 & \cdots & 0 \\ 0 & N & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & N \\\end{matrix} \right]}_{(L+1)(L+1)}}, \\ & Y=\left[ \begin{matrix} y({{t}_{0}}) \\ y({{t}_{1}}) \\ \vdots \\ y({{t}_{L}}) \\\end{matrix} \right],\ G={{\left[ \begin{matrix} g \\ g \\ \vdots \\ g \\\end{matrix} \right]}_{(L+1)1}},\ \widetilde{\overline{Y}}=\left[ \begin{matrix} {{y}_{1,2}}({{t}_{0}}) \\ {{y}_{1,2}}({{t}_{1}}) \\ \vdots \\ {{y}_{1,2}}({{t}_{L}}) \\\end{matrix} \right],\ \overline{E}={{\left[ \begin{matrix} E & 0 & \cdots & 0 \\ 0 & E & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & E \\\end{matrix} \right]}_{(L+1)(L+1)}}. \\ \end{align}\]

Similarly, the following matrix form is obtained by substituting the collocation points in y1,2(t), Y¯˜=y1,2(t0)y1,2(t1)y1,2(tL)=I(t0)000I(t1)000I(tL)S(t0)S(t1)S(tL)=I¯S¯, \[\widetilde{\overline{Y}}=\left[ \begin{matrix} {{y}_{1,2}}({{t}_{0}}) \\ {{y}_{1,2}}({{t}_{1}}) \\ \vdots \\ {{y}_{1,2}}({{t}_{L}}) \\\end{matrix} \right]=\left[ \begin{matrix} I({{t}_{0}}) & 0 & \cdots & 0 \\ 0 & I({{t}_{1}}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I({{t}_{L}}) \\\end{matrix} \right]\left[ \begin{matrix} S({{t}_{0}}) \\ S({{t}_{1}}) \\ \vdots \\ S({{t}_{L}}) \\\end{matrix} \right]=\overline{I}\overline{S},\] where, I¯=F˜R˜A2¯andS¯=T˜˜R˜˜A, \[\overline{I}=\widetilde{F}\widetilde{R}\overline{{{A}_{2}}}\ \ \ \text{and}\ \ \ \overline{S}=\widetilde{\widetilde{T}}\widetilde{\widetilde{R}}A,\] and, F˜=F(t0)000F(t1)000F(tL),A2¯=A2000A2000A2(L+1)(L+1),R˜=RT000RT000RT(L+1)(L+1),F˜˜=F(t0)F(t1)F(tL),R˜˜=RTKK,K=000000000(L+1)(L+1). \[\begin{align} & \widetilde{F}=\left[ \begin{matrix} F({{t}_{0}}) & 0 & \cdots & 0 \\ 0 & F({{t}_{1}}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & F({{t}_{L}}) \\\end{matrix} \right],\ \overline{{{A}_{2}}}={{\left[ \begin{matrix} {{A}_{2}} & 0 & \cdots & 0 \\ 0 & {{A}_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & {{A}_{2}} \\\end{matrix} \right]}_{(L+1)(L+1)}},\ \widetilde{R}={{\left[ \begin{matrix} {{R}^{T}} & 0 & \cdots & 0 \\ 0 & {{R}^{T}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & {{R}^{T}} \\\end{matrix} \right]}_{(L+1)(L+1)}}, \\ & \widetilde{\widetilde{F}}=\left[ \begin{matrix} F({{t}_{0}}) \\ F({{t}_{1}}) \\ \vdots \\ F({{t}_{L}}) \\\end{matrix} \right],\ \widetilde{\widetilde{R}}=\left[ \begin{matrix} {{R}^{T}} & K & K \\\end{matrix} \right],\ K={{\left[ \begin{matrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \\\end{matrix} \right]}_{(L+1)(L+1)}}. \\ \end{align}\]

The fundamental matrix equation from equations (7)(10) is as follows, FB¯R¯D¯FR¯N¯FR¯E¯F˜R˜A2¯F˜˜R˜˜A=G. \[\left\{ F\overline{B}\overline{R}-\overline{D}F\overline{R}-\overline{N}F\overline{R}-\overline{E}\widetilde{F}\widetilde{R}\overline{{{A}_{2}}}\widetilde{\widetilde{F}}\widetilde{\widetilde{R}} \right\}A=G.\]

Briefly, equation (11) can be written as, WA=Gor[W;G], \[WA=G\ \ {\rm or}\ \ [W;G],\] where, W=FT¯R¯D¯FR¯N¯FR¯E¯F˜R˜A2¯F˜˜R˜. \[W=F\overline{T}\overline{R}-\overline{D}F\overline{R}-\overline{N}F\overline{R}-\overline{E}\widetilde{F}\widetilde{R}\overline{{{A}_{2}}}\widetilde{\widetilde{F}}\widetilde{R}.\]

Equation (12) refers to a nonlinear system of 3(L + 1) algebraic equations with the unknown Morgan-Voyce coefficients A1,I, A2,I and A3,I. The matrix form of the initial conditions for t → 0 in equation (3) can be written as follows, S(t)=B(0)A1=NSI(t)=B(0)A2=NIR(t)=B(0)A3=NR. \[\begin{align} & S(t)=B(0){{A}_{1}}=\left[ {{N}_{S}} \right] \\ & I(t)=B(0){{A}_{2}}=\left[ {{N}_{I}} \right] \\ & R(t)=B(0){{A}_{3}}=\left[ {{N}_{R}} \right]. \\ \end{align}\]

Thus, these matrix forms can be written as, U1=S(0)=a1,0a1,1a1,LU2=I(0)=a2,0a2,1a2,LU3=R(0)=a3,0a3,1a3,L. \[\begin{align} & {{U}_{1}}=S(0)=\left[ \begin{matrix} {{a}_{1,0}} & {{a}_{1,1}} & \cdots & {{a}_{1,L}} \\\end{matrix} \right] \\ & {{U}_{2}}=I(0)=\left[ \begin{matrix} {{a}_{2,0}} & {{a}_{2,1}} & \cdots & {{a}_{2,L}} \\\end{matrix} \right] \\ & {{U}_{3}}=R(0)=\left[ \begin{matrix} {{a}_{3,0}} & {{a}_{3,1}} & \cdots & {{a}_{3,L}} \\\end{matrix} \right]. \\ \end{align}\]

Finally, we replace the row matrices in equation (13) with any three rows of the matrix in equation (12), and we get a solution for equation (1) under initial conditions. Finally, we get the augmented matrix as, W˜A=G. \[\widetilde{W}A=G.\]

First of all, this system is solved and the unknown coefficients ai,0, ai,1, · , ai,L,(i = 1, 2, 3) are found. Then, these coefficients are substituted in equation (2) and, approximate solutions are found.

Error estimation

In this section, we investigate the accuracy of the presented method. SL(t), IL(t), RL(t) are the approximate solutions of equation (1). Therefore, these functions approximately satisfy the equation (1). Once we substitute these functions and the first derivatives of these functions in the equation (1), we get the error estimations for t = tr ∈ [0,R], r = 0, 1, ... as following, E1,L(tr)=|S(tr)+βS(tr)I(tr)+νS(tr)|0E2,L(tr)=|I(tr)βS(tr)I(tr)+γI(tr)|0E3,L(tr)=|R(tr)γI(tr)νS(tr)|0, \[\begin{align} & {{E}_{1,L}}({{t}_{r}})=|{S}'({{t}_{r}})+\beta S({{t}_{r}})I({{t}_{r}})+\nu S({{t}_{r}})|\cong 0 \\ & {{E}_{2,L}}({{t}_{r}})=|{I}'({{t}_{r}})-\beta S({{t}_{r}})I({{t}_{r}})+\gamma I({{t}_{r}})|\cong 0 \\ & {{E}_{3,L}}({{t}_{r}})=|{R}'({{t}_{r}})-\gamma I({{t}_{r}})-\nu S({{t}_{r}})|\cong 0, \\ \end{align}\] and Ei,L ≤ 10kr, i = 1, 2, 3 (kr is a positive number). If we get max10kr = 10k, as L increases, error estimation Ei,L(tr), (t = 1, 2, 3) at each of the points decreases and becomes smaller than 10k.

Numerical applications

This section supports the accuracy and efficiency of the presented method. We offer two numerical examples, one comparing the errors and solutions with the other methods. In the second sample, the results for different vaccination rates are compared. The tables and figures show the comparisons at specific points within the given interval. Numerical computations are performed using MATLABR2021a software.

Example 1

In this example, we consider the SIR model without vaccination for interval 0 ≤ t ≤ 1. The following parameter values are used, NS=20,NI=15,NR=10,β=0.01,γ=0.02,ν=0. \[{{N}_{S}}=20,\ {{N}_{I}}=15,\ {{N}_{R}}=10,\ \beta =0.01,\ \gamma =0.02,\ \nu =0.\]

We compared the results obtained by the proposed method with those in [42]. The approximate solutions for L = 5 are obtained using the presented method as follows, S5(t)=20.000000002.999999999t0.04499957685t2+0.02804671200t3+0.0008058035642t40.0003329149155t5I5(t)=15.00000000+2.699999999t+0.01799970470t20.02816759777t3 0.0006626352597t4+0.0003329022387t5R5(t)=10.00000000+0.300000000t+0.2699987216t2+0.0001208857706t30.0001431683045t4+0.126768711610×107t5. \[\begin{align} & {{S}_{5}}(t)=20.00000000-2.999999999t-0.04499957685{{t}^{2}}+0.02804671200{{t}^{3}} \\ & \ \ \ \ \ \ +0.0008058035642{{t}^{4}}-0.0003329149155{{t}^{5}} \\ & {{I}_{5}}(t)=15.00000000+2.699999999t+0.01799970470{{t}^{2}}-0.02816759777{{t}^{3}} \\ & \ \ \ \ \ \ \ -0.0006626352597{{t}^{4}}+0.0003329022387{{t}^{5}} \\ & {{R}_{5}}(t)=10.00000000+0.300000000t+0.2699987216{{t}^{2}}+0.0001208857706{{t}^{3}} \\ & \ \ \ \ \ \ \ -0.0001431683045{{t}^{4}}+0.126768711610\times {{10}^{-7}}{{t}^{5}}. \\ \end{align}\]

It is known that there is no exact solution for equation (1). Therefore, the obtained solutions using the presented method are compared with the approximation solutions obtained by using the Hermite collocation method (HCM) [42], HPM rafei and LADM [20] in Tables 1, 3 and 5. Besides, the residual errors are presented in Tables 2, 4 and 6 and plotted in Figures 1, 2, 3 for L = 5. The errors obtained with the presented method are smaller than those obtained with HPM and LADM and similar to those obtained with HCM. So, we can say that the presented method improves the results. As the plots and tables show, the M-VCM is effective and usable in solving a nonlinear system of equations. In addition, considerable errors are obtained even for the small value of L.

Fig. 1

Comparison of the residual errors of S(t) (without vaccination) for equation (1).

Fig. 2

Comparison of the residual errors of I(t) (without vaccination) for equation (1).

Fig. 3

Comparison of the residual errors of R(t) (without vaccination) for equation (1).

Comparisons of the values of S(t) for HPM, HCM, LADM and M-VCM for example 1.

t S(t) (HPM) S(t) (HCM for L=5) S(t) (LADM) S(t) M-VCM

0.2 19.39842557 19.39842556 19.39842557 19.3984255735
0.4 18.79461232 18.79461227 18.79461232 18.7946122770
0.6 18.18993727 18.18993677 18.18993727 18.1899367871
0.8 17.58578366 17.58578115 17.58578366 17.5857811555
1.0 16.98352883 16.98352001 16.98352883 16.9835200246

Comparisons of the residual errors ERS for HPM, HCM, LADM and M-VCM for example 1.

t ERS (HPM) ERS (HCM for L=5) ERS (LADM) ERS M-VCM

0.2 2.2416×10−8 1.0080×10−9 2.2417×10−8 3.8045×10−9
0.4 6.6425×10−7 1.0201×10−9 6.6427×10−7 4.4120×10−9
0.6 4.6388×10−6 1.0363×10−9 4.6389×10−6 5.2320×10−9
0.8 1.7832×10−5 1.0566×10−9 1.7833×10−5 6.3120×10−9
1.0 4.9171×10−5 1.9918×10−7 4.9172×10−5 1.9256×10−7

Comparisons of the values of I(t) for HPM, HCM, LADM and M-VCM for example 1.

t I(t) (HPM) I(t) (HCM for L=5) I(t) (LADM) I(t) M-VCM

0.2 15.54049369 15.54049370 15.54049369 15.5404936937
0.4 16.08106363 16.08106367 16.08106363 16.081063672
0.6 16.62033527 16.62033570 16.62033527 16.6203357015
0.8 17.15693346 17.15693567 17.15693345 17.156935671
1.0 17.68949465 17.68950236 17.68949464 17.6895023739

Comparisons of the residual errors ERI for HPM, HCM, LADM and M-VCM for example 1.

t ERI (HPM) ERI (HCM for L=5) ERI (LADM) ERI M-VCM

0.2 2.0373×10−8 1.0080×10−9 2.0375×10−8 8.9114×10−9
0.4 5.9888 ×10−7 1.0201×10−9 5.9892×10−7 9.0230×10−9
0.6 4.1424×10−6 1.0363×10−9 4.1426×10−6 9.0493×10−9
0.8 1.5741×10−5 1.0566×10−9 1.5741×10−5 8.9952×10−9
1.0 4.2787×10−5 1.9918×10−7 4.2789×10−5 4.4706×10−7

Comparisons of the values of R(t) for HPM, HCM, LADM and M-VCM for example 1.

t R(t) (HPM) R(t) (HCM for L=5) R(t) (LADM) R(t) Morgan-Voyce

0.2 10.06108073 10.06108073 10.06108073 10.0610807329
0.4 10.12432405 10.12432405 10.12432405 10.1243240513
0.6 10.18972750 10.18972751 10.18972750 10.1897275117
0.8 10.25728304 10.25728317 10.25728304 10.2572831742
1.0 10.32697698 10.32697760 10.32697698 10.3269776025

Comparisons of the residual errors ERR for HPM, HCM, LADM and M-VCM for example 1.

t ERR (HPM) ERR (HCM for L=5) ERR (LADM) ERR M-VCM

0.2 1.5573×10−9 1.7802×10−12 1.5573×10−9 1.9663×10−9
0.4 7.7657×10−9 3.5556×10−12 7.7656×10−9 2.7950×10−9
0.6 2.0477×10−7 5.3304×10−12 2.0477×10−7 3.7913×10−9
0.8 1.1701×10−6 7.1090×10−12 1.1701×10−6 4.9600×10−9
1.0 4.1334×10−6 4.5486 ×10−7 4.1334×10−6 2.4930×10−7
Example 2

Consider equation (1) for interval 0 ≤ t ≤ 1. The parameter values are selected such that NS = 0.95, NI = 0.05, NR = 0, β = 0.2, γ = 0.1, ν = 0.005, 0.01, 0.02, 0.03, 0.06.

We selected these parameters from study [14]. The residual errors for S(t), I(t), R(t) are shown in Tables 7–11 and presented in Figures 4–8 for different values of ν. For small ν values, the errors of S(t) and R(t) are smaller, while the error of I(t) does not change much. The smallest errors of I(t) are obtained for the value ν = 0.02. The smallest errors of S(t) and R(t) are obtained for the values ν = 0.01 and 0.03. Thus, we can say that the best approximation is obtained for ν = 0.02.

Fig. 4

The residual errors for equation (1), ν = 0.005 via M-VCM.

Fig. 5

The residual errors for equation (1), ν = 0.01 via M-VCM.

Fig. 6

The residual errors for equation (1), ν = 0.02 via M-VCM.

Fig. 7

The residual errors for equation (1), ν = 0.03 via M-VCM.

Fig. 8

The residual errors for equation (1), ν = 0.06 via M-VCM.

The residual errors for equation (1), ν = 0.005 via M-VCM.

t ERS ERI ERR

0.1 2.0017×10−7 2.0805×10−8 1.0544×10−8
0.2 2.4419×10−7 2.5143×10−8 1.1137×10−8
0.3 2.9299×10−7 2.9958×10−8 1.1797×10−8
0.4 3.4678×10−7 3.5273×10−8 1.2529×10−8
0.5 4.0577×10−7 4.1114×10−8 1.3337×10−8
0.6 4.7020×10−7 4.7505×10−8 1.4226×10−8
0.7 5.4027×10−7 5.4471×10−8 1.5200×10−8
0.8 6.1622×10−7 6.2036×10−8 1.6262×10−8
0.9 6.9824×10−7 7.0221×10−8 1.7416×10−8
1 7.8657×10−7 7.9046×10−8 1.8661×10−8

The residual errors for equation (1), ν = 0.01 via M-VCM.

t ERS ERI ERR

0.1 5.1591×10−8 9.3905×10−8 1.7736×10−9
0.2 5.5453×10−8 1.1294×10−7 2.5089×10−9
0.3 5.9708×10−8 1.3399×10−7 3.4104×10−9
0.4 6.4395×10−8 1.5712×10−7 4.4980×10−9
0.5 6.9554×10−8 1.8243×10−7 5.7929×10−9
0.6 7.5227×10−8 2.1000×10−7 7.3172×10−9
0.7 8.1458×10−8 2.3993×10−7 9.0941×10−9
0.8 8.8295×10−8 2.7229×10−7 1.1148×10−8
0.9 9.5794×10−8 3.0717×10−7 1.3503×10−8
1 1.0402×10−7 3.4464×10−7 1.6184×10−8

The residual errors for equation (1), ν = 0.02 via M-VCM.

t ERS ERI ERR

0.1 3.1084×10−7 1.0500×10−9 2.4970×10−7
0.2 4.0778×10−7 2.0300×10−9 2.9760×10−7
0.3 5.2230×10−7 3.2950×10−9 3.5110×10−7
0.4 6.5640×10−7 4.0000×10−9 4.1066×10−7
0.5 8.1100×10−7 6.8300×10−9 4.7650×10−7
0.6 9.9065×10−7 9.2000×10−9 5.4925×10−7
0.7 1.1948×10−7 1.2043×10−8 6.2904×10−7
0.8 1.4266×10−7 1.5405×10−8 7.1630×10−7
0.9 1.6880×10−6 1.9000×10−8 8.1140×10−7
1 1.9819×10−6 2.4010×10−8 9.1494×10−7

The residual errors for equation (1), ν = 0.03 via M-VCM.

t ERS ERI ERR

0.1 2.2100×10−8 3.7200×10−8 6.9600×10−10
0.2 2.7380×10−8 4.9700×10−8 1.7400×10−9
0.3 3.3490×10−8 6.4701×10−8 3.0619×10−9
0.4 4.0500×10−8 8.2200×10−8 4.6670×10−9
0.5 4.8700×10−8 1.0270×10−7 6.6010×10−9
0.6 5.7000×10−8 1.2640×10−7 8.9000×10−9
0.7 6.8390×10−8 1.5347×10−7 1.1605×10−8
0.8 8.0117×10−8 1.8420×10−7 1.4750×10−8
0.9 9.3220×10−8 2.1914×10−7 1.8380×10−8
1 1.0780×10−7 2.5836×10−7 2.2531×10−8

The residual errors for equation (1), ν = 0.06 via M-VCM.

t ERS ERI ERR

0.1 8.5647×10−7 5.4000×10−8 2.0762×10−7
0.2 9.5890×10−7 5.3700×10−8 2.4940×10−7
0.3 1.0660×10−6 5.2000×10−8 2.9568×10−7
0.4 1.1792×10−6 4.9930×10−8 3.4662×10−7
0.5 1.2972×10−6 4.6100×10−8 4.0240×10−7
0.6 1.4202×10−6 4.0964×10−8 4.6333×10−7
0.7 1.5484×10−6 3.4200×10−8 5.2955×10−7
0.8 1.6819×10−6 2.5800×10−8 6.0120×10−7
0.9 1.8205×10−6 1.5672×10−8 6.7870×10−7
1 1.9641×10−6 3.7710×10−9 7.6213×10−7
Conclusions

In this paper, we used the M-VCM to find the approximate solution of the governing model. Several applications were presented to show the efficiency and accuracy of the proposed method. To display the accuracy of the approximate solutions, these solutions are once again substituted into equation (1) using MATLAB software. Thus, this work offers a different measure for the reliability of the approximate solutions. The obtained approximate solutions and errors have been compared by the HPM [18] and the LADM [20]. These comparisons have shown that the presented method to find approximate solutions to the SIR model from epidemic models is more efficient and valuable. Tables 2, 4, and 6 illustrated that the numerical solutions of HPM [18] and LADM [20] are nearly the same. As can be seen from the figures and tables, minimal errors were obtained in this study, indicating that the results are very close to the exact solutions. In particular, in the second example, we can accurately determine the vaccination rate needed to control the epidemic. In conclusion, all these findings show that our method is efficient and feasible for solving the nonlinear ODE systems. The most significant advantage of the proposed method is that all calculations can be easily and quickly applied with the help of MATLAB code. In addition, the fact that the SIR model is a real-life problem increases the importance of our study. One of the most significant advantages of the method is changing the system equation (1) into an easily solved nonlinear algebraic equation system. As a further study, this method can be applied to other epidemic models for longer time periods.

Declarations
Conflict of interest 

The authors declare no conflict of interest.

Funding

Not applicable.

Author’s contribution

Ö.İ.-Methodology, Supervision, Resources, and Methodology, Validation, Conceptualization and Formal analysis; G.Ş.-Data Curation, Writing-Original Draft, Investigation and Visualization. All authors read and approved the final submitted version of this manuscript.

Acknowledgement

Not applicable.

Data availability statement

All data that support the findings of this study are included within the article.

Using of AI tools

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

eISSN:
2956-7068
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Computer Sciences, other, Engineering, Introductions and Overviews, Mathematics, General Mathematics, Physics