Otwarty dostęp

Research on Vehicle and Pedestrian Detection Based on Improved RT-DETR

 oraz   
16 cze 2025

Zacytuj
Pobierz okładkę

Figure 1.

Network architecture of RT-DETR
Network architecture of RT-DETR

Figure 2.

Network architecture of improved RT-DETR
Network architecture of improved RT-DETR

Figure 3.

Full 3-D weights for attention
Full 3-D weights for attention

Figure 4.

Comparison before and after improvement
Comparison before and after improvement

Figure 5.

Visualization results
Visualization results

EXPERIMENTAL RESULTS

RT-DETR Without SimAM Added SimAM
Precision 0.779 0.793
Recall 0.621 0.624
mAP@50 0.699 0.736
mAP@50:59 0.379 0.383

EXPERIMENTAL PLATFORM

Hyper-parameters Value
Inputs 640×640
Epochs 100
Batchsize 16
Lr0 0.001
Lrf 0.0001
Momentum 0.9
Warmup-decay 0.0005
Warmup-epochs 5

DATASER SAMPLING SITUATION

Content Detailed information
Dataset size 69534 valid training samples
Sample method Randomly select samples
Sample quantity Sampling 3000 samples
Tag filtering Filter other category tags
Division ratio 8:2
Training 2400 training images
Verify 600 verification images

CAMPARISON RESULTS

Model YOLOv8 Ours
Precision 0.721 0.793
Recall 0.645 0.624
mAP@50 0.692 0.736
mAP@50:59 0.372 0.383
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Informatyka, Informatyka, inne