Research on Vehicle and Pedestrian Detection Based on Improved RT-DETR
und
16. Juni 2025
Über diesen Artikel
Online veröffentlicht: 16. Juni 2025
Seitenbereich: 85 - 93
DOI: https://doi.org/10.2478/ijanmc-2025-0019
Schlüsselwörter
© 2025 Jingshu LI et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

EXPERIMENTAL RESULTS
RT-DETR | Without SimAM | Added SimAM |
---|---|---|
Precision | 0.779 | 0.793 |
Recall | 0.621 | 0.624 |
mAP@50 | 0.699 | 0.736 |
mAP@50:59 | 0.379 | 0.383 |
EXPERIMENTAL PLATFORM
Hyper-parameters | Value |
---|---|
Inputs | 640×640 |
Epochs | 100 |
Batchsize | 16 |
Lr0 | 0.001 |
Lrf | 0.0001 |
Momentum | 0.9 |
Warmup-decay | 0.0005 |
Warmup-epochs | 5 |
DATASER SAMPLING SITUATION
Content | Detailed information |
---|---|
Dataset size | 69534 valid training samples |
Sample method | Randomly select samples |
Sample quantity | Sampling 3000 samples |
Tag filtering | Filter other category tags |
Division ratio | 8:2 |
Training | 2400 training images |
Verify | 600 verification images |
CAMPARISON RESULTS
Model | YOLOv8 | Ours |
---|---|---|
Precision | 0.721 | 0.793 |
Recall | 0.645 | 0.624 |
mAP@50 | 0.692 | 0.736 |
mAP@50:59 | 0.372 | 0.383 |