[
Abolmaali, R., Tarkesh, M., Bashari, H., 2018. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics, 43: 116–123. https://doi.org/10.1016/j.ecoinf.2017.10.002
]Search in Google Scholar
[
Adhikari, D., Reshi, Z., Datta, B.K., Samant, S.S., Chettri, A., Upadhaya, K., Shah, M.A., Singh, P.P., Tiwary, T., Majumdar, K., Pradhan, A., Thakur, M.L., Salam, N., Zahoor, Z., Agarwal., A., Khokhar, D., Vishwanath, 2008. Conservation through in vitro propagation of a critically endangered medicinal plant, Dactylorhiza hatagirea (D. Don) Soó. In Reddy, M.V. (eds). Wildlife biodiversity conservation. Daya Publishing House, p. 294–299.
]Search in Google Scholar
[
Akhter, C., Khuroo, A.A., Dar, G.H., Khan, Z.S., Malik, A.H., 2011. An updated checklist of orchids in the Indian Himalayan State of Jammu and Kashmir. Pleione, 5 (1): 1–9.
]Search in Google Scholar
[
Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43 (6): 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
]Search in Google Scholar
[
Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi, D., Schirone, B., 2017. Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environment Change, 17: 143–156. https://doi.org/10.1007/s10113-016-0987-2
]Search in Google Scholar
[
Ayan, S., Bugday, E., Varol T., Ozel, B.H., Thurm, E.A., 2022. Effect of climate change on potential distribution of oriental beech (Fagus orientalis Lipsky.) in the twenty frst century in Turkey. Theoretical and Applied Climatology, 148: 165–177. https://doi.org/10.1007/s00704-022-03940-w
]Search in Google Scholar
[
Baskin, C.C., Baskin, J.M., 1998. Seeds: ecology, biogeography, and, evolution of dormancy and germination. San Diego: Academic Press. 666 p.
]Search in Google Scholar
[
Bhatt, A., Joishi, S.K., Garola, S., 2005. Dactylorhiza hatagirea (D. Don) Soó - a west Himalayan orchid in Peril. Current Science, 89: 610–612. https://www.jstor.org/stable/24111155
]Search in Google Scholar
[
CBD, 2019. Biodiversity and the 2030 Agenda for sustainable development. Technical note. Montréal, Quebec, Canada: Secretariat of the Convention on Biological Diversity. [cit. 2024-07-22]. https:/www.cbd.int/development/doc/biodiversity-2030-agenda-technical-note-en.pdf.
]Search in Google Scholar
[
Chauhan, R.S., Nautiyal, M.C., Vashistha, R.K., Prasad, P., 2014. Morpho-biochemical variability and selection strategies for the germplasm of Dactylorhiza hatagirea (D. Don) Soó: an endangered medicinal orchid. Journal of Botany, 2014: article ID 869167, 5 p. https://doi.org/10.1155/2014/869167
]Search in Google Scholar
[
Chugh, S., Guha, S., Rao, I.U., 2009. Micropropagation of orchids: a review on the potential of different ex-plants. Scientia Horticulture, 122: 507–507. https://doi.org/10.1016/j.scienta.2009.07.016
]Search in Google Scholar
[
Dad, J., 2019. Phytodiversity and medicinal plant distribution in pasturelands of North Western Himalaya in relation to environmental gradients. Journal of Mountain Science, 16 (4): 884–897. https://doi.org/10.1007/s11629-018-5104-1
]Search in Google Scholar
[
Dad, J.M., Khan, A.B., 2011. Threatened medicinal plants of Gurez valley, Kashmir Himalayas: distribution pattern and current conservation status. International Journal of Biodiversity Science, Ecosystem Services and Management, 7 (1): 20–26.
]Search in Google Scholar
[
Dhiman, N., Sharma, N.K., Thapa, P., Sharma, I., Swarnkar, M.K., Chawla, A., Shankar, R., Bhattacharya, A., 2019. De novo transcriptome provides insights into the growth behavior and resveratrol and trans-stilbenes biosynthesis in Dactylorhiza hatagirea - an endangered alpine terrestrial orchid of western Himalaya. Scientific Reports, 9: 13133. https://doi.org/10.1038/s41598-019-49446-w
]Search in Google Scholar
[
Dhyani, P.P., Kala, C.P., 2005. Current research on medicinal plants: five lesser-known but valuable aspects. Current Science, 88 (3): 335
]Search in Google Scholar
[
Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D., Bacchetta, G., 2016. The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. Journal of Nature Conservation, 33: 1–9. https://doi.org/10.1016/j.jnc.2016.06.001
]Search in Google Scholar
[
Gebrewahid, Y., Abrehe, S., Meresa, E., 2020. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecological Processes, 9: article number 6 (2020). https://doi.org/10.1186/s13717-019-0210-8
]Search in Google Scholar
[
Goraya, G.S., Ved, D.K., 2017. Medicinal plants in India: an assessment of their demand and supply. New Delhi: National Medicinal Plants Board, Ministry of AYUSH, Government of India; Dehradun: Indian Council of Forestry Research and Education. 395 p.
]Search in Google Scholar
[
Griffies, S., Winton, M., Donner, L., Horowitz, L., Downes, S., Farneti, R., Gnanadesikan, A., Hurl in, W., Lee H., Liang, Z., Palter, J., 2011. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. Journal of Climatology, 24 (13): 3520–3544. https://doi.org/10.1175/2011JCLI3964.1
]Search in Google Scholar
[
Hoffmann, A.A., Rymer, P.D., Byrne, M., Ruthrof, K.X., Whinam, J., McGeoch, M., Bergstrom, D.M., Guerin, G.R., Sparrow, B., Joseph, L., Hill, S.J., Andrew, N.R., Camac, J., Bell, N., Riegler, M., Gardner, J.L., Williams, S.E., 2019. Impacts of recent climate change on terrestrial flora and fauna: some emerging Australian examples. Australian Ecology, 44: 3–27. https://doi.org/10.1111/aec.12674
]Search in Google Scholar
[
IPCC, 2014. Climate Change 2014. Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., Meyer, L.A(eds)]. IPCC, Switzerland. 151 p.
]Search in Google Scholar
[
IUCN. 2004. National register of medicinal and aromatic plants. International Union for Nature Conservation Nepal, Kathmandu, Nepal.
]Search in Google Scholar
[
Jalal, J.S., Rawat, G.S., 2009. Habitat studies for conservation of medicinal orchids of Uttarakhand, Western Himalaya. African Journal of Plant Science, 3 (9): 200–204.
]Search in Google Scholar
[
Kaky, M., Nolan, V., Alatawi, A., Gilbert, F., 2020. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants. Ecological Informatics, 60: 101150. https://doi.org/10.1016/j.ecoinf.2020.101150
]Search in Google Scholar
[
Lughadha, E. N., Bachman, S.P., Leão, T.C.C., Forest, F., Halley, J.M., Moat, J., Acedo, C., Bacon, K.L., Brewer, R.F.A., Gâteblé, G., Gonçalves, S.C., Govaerts, R., Hollingsworth, P.M., Krisai-Greilhuber, I., de Lirio, E.J., Moore, P.G.P., Negrão, R., Onana, J.M., Rajaovelona, L.R., Razanajatovo, H., Reich, P.B., Richards, S.L., Rivers, M.C., Cooper, A., Iganci, J., Lewis, G.P., Smidt, E.C., Antonelli, A., Mueller, G.M., Walker, B.E., 2020. Extinction risk and threats to plants and fungi. Plants People Planet, 2: 389–408. https://doi.org/10.1002/ppp3.10146
]Search in Google Scholar
[
Marco, M.D., Harwood, T.D., Hoskins, A.J., Ware, C., Hill, S.L.L., Ferrier, S., 2019. Projecting impacts of global climate and land‐use scenarios on plant bio-diversity using compositional‐turnover modelling. Global Change Biology, 25 (8): 2763–2778. https://doi.org/10.1111/gcb.14663
]Search in Google Scholar
[
Matteodo, M., Wipf, S., Stöckli, V., Rixen, C., Vittoz, P., 2013. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environment Research Letters, 8 (2): 024043. https://doi.org/10.1088/1748-9326/8/2/024043
]Search in Google Scholar
[
Natta, S., Mondal, S.A., Pal, K., Mandal, S., Sahana, N., Pal, R., Pandit, G.K., Alam, B. K., Das, S.S., Biswas, S.S., Kalaivanan, N.S., 2022. Chemical composition, antioxidant activity and bioactive constituents of six native endangered medicinal orchid species from northeastern Himalayan region of India. South African Journal of Botany, 150: 248–259. https://doi.org/10.1016/j.sajb.2022.07.020
]Search in Google Scholar
[
Nautiyal, M.C., Nautiyal, B.P., Prakash, V., 2004. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist, 24: 125–134. https://doi.org/10.1007/s10669-004-4803-z
]Search in Google Scholar
[
Noroozi, J., Moser, D., Essl, F., 2015. Diversity, distribution, ecology and description rates of alpine endemic plant species from Iranian mountains. Alpine Botany, 126 (1): 1–9. https://doi.org/10.1007/s00035-015-0160-4
]Search in Google Scholar
[
Nunez, S., Arets, E., Alkemade, R., Verwer, C., Leemans, R., 2019. Assessing the impacts of climate change on biodiversity: is below 2 °C enough? Climatic Change, 154: 351–365. https://doi.org/10.1007/s10584-019-02420-x
]Search in Google Scholar
[
Padalia, H., Srivastava, V., Kushwaha, S.P.S., 2014. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: comparison of MaxEnt and GARP. Ecological Informatics, 22: 36–43. http://dx.doi.org/10.1016/j.ecoinf.2014.04.002
]Search in Google Scholar
[
Parolo, G., Rossi, G., 2008. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Applied Ecology, 9: 100–107. https://doi.org/10.1016/j.baae.2007.01.005
]Search in Google Scholar
[
Peters, M.K., Hemp, A., Appelhans, T., Becker., J.N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S.W., Frederiksen, S.B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig, M., Hemp, C., Kindeketa, W.J., Kuhnel, A., Mayr, A.V., Mwangomo, E., Ngereza, C., Njoyu, H.K., Otte, I., Pabst, H., Renner, M., Roder, J., Rutten, G., Costa, D.S., Sierra-Cornejo, N., Vollstadt, M.G.R., Dulle, H.I., Eardley, C.D., Howell, K.M., Keller, A., PETERS, R.S., Ssymank, A., Kakengi, V., Zhang, J., Bogner, C., Bohning-Gaese, K., Brandl, P., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Kuzyakov, Y., Nauss, T., Schleuning, M., Tschapka, M., Fischer, M., Steffen-Dewenter, I., 2019. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568: 88–92. https://doi.org/10.1038/s41586-019-1048-z
]Search in Google Scholar
[
Phillips, S., Anderson, R., Schapire, R., 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
]Search in Google Scholar
[
Pridgeon, A, Chase, M., Cribb, P., Rasmussen, F.N., 1999. Genera Orchidacearum. Vol. 1. Oxford, U.S.A: Oxford University Press. 230 p.
]Search in Google Scholar
[
Rana, H.K., Luo, D., Rana, S.K., Sun, H., 2020. Geological and climatic factors affect the population genetic connectivity in Mirabilis himalaica (Nyctaginaceae): insight from phylogeography and dispersal corridors in the Himalaya-Hengduan Biodiversity Hotspot. Frontiers in Plant Science, 10: 1721. https://doi.org/10.3389/fpls.2019.01721
]Search in Google Scholar
[
Rana, S., Rana, H., Ghimire, S., 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14 (3): 558–570. https://doi.org/10.1007/s11629-015-3822-1
]Search in Google Scholar
[
Rathore, P., Roy, A., Karnatak, H., 2019. Modelling the vulnerability of Taxus wallichiana to climate changes cenarios in South East Asia. Ecological Indicators, 102: 199–207. https://doi.org/10.1016/j.ecolind.2019.02.020
]Search in Google Scholar
[
Romshoo, S.A., Bashir, J., Rashid, I., 2020. Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models. Climate Change, 162 (3): 1473–1491. https://doi.org/10.1007/s10584-020-02787-2
]Search in Google Scholar
[
Shaheen, H., Ibrahim, M., Ullah, Z., 2019. Spatial patterns and diversity of the alpine flora of Deosai plateau, Western Himalayas. Pakistan Journal of Botany, 51 (1): 205–212. http://dx.doi.org/10.30848/PJB2019-1(39)
]Search in Google Scholar
[
Shapoo, G.A., Kalo, Z.A., Singh, S., Ganie, A.H., Padder, B.M., 2014. Evaluation of diversity and habitat types of some orchid species growing in Kashmir Himalaya. Species, 10 (22): 8–13.
]Search in Google Scholar
[
Sharma, S., Arunachalam, K., Bhavsar, D., Kala, R., 2018. Modelling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research in Medicinal and Aromatic Plants, 10: 99–105. https://doi.org/10.1016/j.jarmap.2018.02.003
]Search in Google Scholar
[
Shrestha, B., Tsiftsis, S., Chapagain, D.J., Khadka, C., Bhattarai, P., Kayastha, Shrestha, N., Alicja, Kolanowska, M., Kindlmann, P., 2021 Suitability of habitats in Nepal for Dactylorhiza hatagirea now and under predicted future changes in climate. Plants, 10 (3): 467. https://doi.org/10.3390/plants10030467
]Search in Google Scholar
[
Singh, L., Kanwar, N., Bhatt, I.D., Nandi, S.K., Bisht, A.K., 2022. Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios. PLoS ONE, 17 (6): e0269673. https://doi.org/10.1371/journal.pone.0269673
]Search in Google Scholar
[
Singh, L., Bhatt, I.D., Negi, V.S., Nandi, S.K., Rawal, R.S., Bisht, A.K., 2021. Population status, threats, and conservation options of the orchid Dactylorhiza hatagirea in Indian Western Himalaya. Regional Environmental Change, 21: 40. https://doi.org/10.1007/s10113-021-01762-6
]Search in Google Scholar
[
Singh, R.M., Chandra, J.T., Rinchen, D., Ayyanadar, A., Prakash, Y.O., 2017. Struggle from subsistence to sustainability and threat to local biodiversity under changing climate: a case study on Ladakh folk agriculture. Climate Change and Environmental Sustainability, 5 (1): 59–65. https://doi.org/10.5958/2320-42X.2017.00006.0
]Search in Google Scholar
[
Smeraldo, S., Di Febbraro, M., Bosso, L., Flaquer, C., Guixé, D., Lisón, F., Meschede, A., Juste, J., Prüger, J., Puig-Montserrat, X., Russo, D., 2018. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodiversity and Conservation, 27: 2425–2441, https://doi.org/10.1007/s10531-018-1545-7
]Search in Google Scholar
[
Sorbe, F., Gränzig, T., Förster, M., 2023. Evaluating sampling bias correction methods for invasive species distribution modeling in Maxent. Ecological Informatics, 76: 102124. https://doi.org/10.1016/j.ecoinf.2023.102124
]Search in Google Scholar
[
Štípková, Z., Tsiftsis, S., Kindlmann, P., 2024. Is the GBIF appropriate for use as input in models of predicting species distributions? Study from the Czech Republic. Nature Conservation Research, 9 (1): 84–95. https://dx.doi.org/10.24189/ncr.2024.008
]Search in Google Scholar
[
Stockwell, D., Peterson, A., 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148 (1): 1–13. https://doi.org/10.1016/S0304-3800(01)00388-X
]Search in Google Scholar
[
Swarts, N.D., Dixon, K.W., 2009. Terrestrial orchid conservation in the age of extinction. Annals of Botany,104 (3): 543–556.https://dx.doi.org/10.1093%2Faob%2Fmcp025
]Search in Google Scholar
[
Thakur, N., Kaur, R., 2013. Molecular characterization of Dactylorhiza hatagirea (D. Don) Soó - A critically endangered medicinal orchid. International Journal of Medicinal and Aromatic Plants, 3 (2): 184–190.
]Search in Google Scholar
[
Thakur, D., Rathore, N., Sharma, M.K., Prakash, O., Chawla, A., 2021. Identification of ecological factors affecting the occurrence and abundance of Dactylorhiza hatagirea (D. Don) Soó in the Himalaya. Journal of Applied Research on Medicinal and Aromatic Plants, 20: 100286. https://doi.org/10.1016/j.jarmap.2020.100286
]Search in Google Scholar
[
Venne, S., Currie, D.J., 2021. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Diversity and Distributions, 27: 873–886. https://doi.org/10.1111/ddi.13238
]Search in Google Scholar
[
Vij, S.P., 2002. Orchids and tissue culture: current status. In Role of plant tissue culture in biodiversity conservation and economic development. Nainital, India: Gyanodaya Prakashan, p. 491–502.
]Search in Google Scholar
[
Voldoire, A., Sanchez-Gomez, E., Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., 2013. The CNRMCM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40 (10): 2091–2121. https://doi.org/10.1007/s00382-011-1259-y
]Search in Google Scholar
[
Wani, I.A., Khan, S., Verma, S. Al-Misned, A., Shafik, H.M., El-Serehy, H., 2022. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Scientific Reports, 12: 13205 (2022). https://doi.org/10.1038/s41598-022-16837-5
]Search in Google Scholar
[
Wani, I.A., Verma, S., Mushtaq, S., Alsahli, A.A., Alyemeni, M.N., Tariq, M., Pant, S., 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soó: A conservation approach for critically endangered medicinal orchid. Saudi Journal of Biological Sciences, 28 (4): 2109–2122. https://doi.org/10.1016/j.sjbs.2021.01.054
]Search in Google Scholar
[
Warghat, A.R., Bajpai, P.K., Sood, H., Chaurasia, O.P., Srivastava, R.B., 2012. Morphometric analysis of Dactylorhiza hatagirea (D. Don), a critically endangered orchid in cold desert Ladakh region of India. African Journal of Biotechnology, 11 (56): 11943–11951. https://doi.org/10.5897/AJB11.4242
]Search in Google Scholar
[
Warghat, A.R., Bajpai, P.K., Srivastava, R.B., Chaurasia, O.P., Sood, H., 2013. Population gennetic structure and conservation of small fragmented location of Dactylorhiza hatagirea in Ladakh region of India. Scientia Horticulturae, 164: 448–454.
]Search in Google Scholar
[
Warren, D.L., Seifert, S.N., 2011. Ecological niche modelling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21: 335–342. http://dx.doi.org/10.2307/29779663
]Search in Google Scholar
[
Weldemariam, E.Ch., Dejene, S.W.D., 2021. Predicting invasion potential of Senna didymobotrya (Fresen.) Irwin & Barneby under the changing climate in Africa. Ecological Processes, 10: article number 5 (2021). https://doi.org/10.1186/s13717-020-00277-y
]Search in Google Scholar
[
Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forch-hammer, M.C., Grytnes, J.A., Guisan, A., Heikkinen, R.K., Hoye, T.T., Kuhn, I., Luoto, M., Maiorano, L., Nilsson, M.C., Normand, S., Ockinger, E., Schimdt, N.M., Termansen, M., Timmermann, A., Wardle, D.A., Asstrup, P., Svenning, J.C., 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88 (1): 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x
]Search in Google Scholar
[
Xu, D., Zhuo, Z., Wang, R., Ye, M., Pu, B., 2019. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation, 19: e00691. https://doi.org/10.1016/j.gecco.2019.e00691
]Search in Google Scholar
[
Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., Roy, P.S. 2013. Maxent modeling for predicting the potential dis tribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51: 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004
]Search in Google Scholar
[
Yi, Y., Cheng, X., Wieprecht, S., Tang, C., 2014. Comparison of habitat suitability models using different habitat suitability evaluation methods. Ecological Engineering, 71: 335–345. https://doi.org/10.1016/j.ecoleng.2014.07.034
]Search in Google Scholar
[
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, H., Obata, A., Nakano, H., Koshiro, T., Ose, T., Kitoh, A., 2012. A new global climate model of the meteorological research institute: MRI-CGCM3—model description and basic performance. Journal of Meteorological Society of Japan. Series II, 90A: 23–64. https://doi.org/10.2151/jmsj.2012-A02
]Search in Google Scholar
[
Zlatanov, T., Elkin, C., Irauschek, F., Lexer M.J., 2017. Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Regional Environmental Change, 17: 79–91. https://doi.org/10.1007/s10113-015-0869-z
]Search in Google Scholar
[
Zhong, Y., Xue, Z., Jiang, M., Liu, B., Wang, G., 2021. The application of species distribution modeling in wetland restoration: a case study in the Songnen Plain, Northeast China. Ecological Indictors, 121: 107137. https://doi.org/10.1016/j.ecolind.2020.107137
]Search in Google Scholar