Acceso abierto

Effect of climate change on potential distribution of Dactylorhiza hatagirea (D. Don) Soó in the twenty-first century across the north-western Himalayas

 y   
28 ene 2025

Cite
Descargar portada

Abolmaali, R., Tarkesh, M., Bashari, H., 2018. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics, 43: 116–123. https://doi.org/10.1016/j.ecoinf.2017.10.002 Search in Google Scholar

Adhikari, D., Reshi, Z., Datta, B.K., Samant, S.S., Chettri, A., Upadhaya, K., Shah, M.A., Singh, P.P., Tiwary, T., Majumdar, K., Pradhan, A., Thakur, M.L., Salam, N., Zahoor, Z., Agarwal., A., Khokhar, D., Vishwanath, 2008. Conservation through in vitro propagation of a critically endangered medicinal plant, Dactylorhiza hatagirea (D. Don) Soó. In Reddy, M.V. (eds). Wildlife biodiversity conservation. Daya Publishing House, p. 294–299. Search in Google Scholar

Akhter, C., Khuroo, A.A., Dar, G.H., Khan, Z.S., Malik, A.H., 2011. An updated checklist of orchids in the Indian Himalayan State of Jammu and Kashmir. Pleione, 5 (1): 1–9. Search in Google Scholar

Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43 (6): 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x Search in Google Scholar

Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi, D., Schirone, B., 2017. Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environment Change, 17: 143–156. https://doi.org/10.1007/s10113-016-0987-2 Search in Google Scholar

Ayan, S., Bugday, E., Varol T., Ozel, B.H., Thurm, E.A., 2022. Effect of climate change on potential distribution of oriental beech (Fagus orientalis Lipsky.) in the twenty frst century in Turkey. Theoretical and Applied Climatology, 148: 165–177. https://doi.org/10.1007/s00704-022-03940-w Search in Google Scholar

Baskin, C.C., Baskin, J.M., 1998. Seeds: ecology, biogeography, and, evolution of dormancy and germination. San Diego: Academic Press. 666 p. Search in Google Scholar

Bhatt, A., Joishi, S.K., Garola, S., 2005. Dactylorhiza hatagirea (D. Don) Soó - a west Himalayan orchid in Peril. Current Science, 89: 610–612. https://www.jstor.org/stable/24111155 Search in Google Scholar

CBD, 2019. Biodiversity and the 2030 Agenda for sustainable development. Technical note. Montréal, Quebec, Canada: Secretariat of the Convention on Biological Diversity. [cit. 2024-07-22]. https:/www.cbd.int/development/doc/biodiversity-2030-agenda-technical-note-en.pdf. Search in Google Scholar

Chauhan, R.S., Nautiyal, M.C., Vashistha, R.K., Prasad, P., 2014. Morpho-biochemical variability and selection strategies for the germplasm of Dactylorhiza hatagirea (D. Don) Soó: an endangered medicinal orchid. Journal of Botany, 2014: article ID 869167, 5 p. https://doi.org/10.1155/2014/869167 Search in Google Scholar

Chugh, S., Guha, S., Rao, I.U., 2009. Micropropagation of orchids: a review on the potential of different ex-plants. Scientia Horticulture, 122: 507–507. https://doi.org/10.1016/j.scienta.2009.07.016 Search in Google Scholar

Dad, J., 2019. Phytodiversity and medicinal plant distribution in pasturelands of North Western Himalaya in relation to environmental gradients. Journal of Mountain Science, 16 (4): 884–897. https://doi.org/10.1007/s11629-018-5104-1 Search in Google Scholar

Dad, J.M., Khan, A.B., 2011. Threatened medicinal plants of Gurez valley, Kashmir Himalayas: distribution pattern and current conservation status. International Journal of Biodiversity Science, Ecosystem Services and Management, 7 (1): 20–26. Search in Google Scholar

Dhiman, N., Sharma, N.K., Thapa, P., Sharma, I., Swarnkar, M.K., Chawla, A., Shankar, R., Bhattacharya, A., 2019. De novo transcriptome provides insights into the growth behavior and resveratrol and trans-stilbenes biosynthesis in Dactylorhiza hatagirea - an endangered alpine terrestrial orchid of western Himalaya. Scientific Reports, 9: 13133. https://doi.org/10.1038/s41598-019-49446-w Search in Google Scholar

Dhyani, P.P., Kala, C.P., 2005. Current research on medicinal plants: five lesser-known but valuable aspects. Current Science, 88 (3): 335 Search in Google Scholar

Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D., Bacchetta, G., 2016. The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. Journal of Nature Conservation, 33: 1–9. https://doi.org/10.1016/j.jnc.2016.06.001 Search in Google Scholar

Gebrewahid, Y., Abrehe, S., Meresa, E., 2020. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecological Processes, 9: article number 6 (2020). https://doi.org/10.1186/s13717-019-0210-8 Search in Google Scholar

Goraya, G.S., Ved, D.K., 2017. Medicinal plants in India: an assessment of their demand and supply. New Delhi: National Medicinal Plants Board, Ministry of AYUSH, Government of India; Dehradun: Indian Council of Forestry Research and Education. 395 p. Search in Google Scholar

Griffies, S., Winton, M., Donner, L., Horowitz, L., Downes, S., Farneti, R., Gnanadesikan, A., Hurl in, W., Lee H., Liang, Z., Palter, J., 2011. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. Journal of Climatology, 24 (13): 3520–3544. https://doi.org/10.1175/2011JCLI3964.1 Search in Google Scholar

Hoffmann, A.A., Rymer, P.D., Byrne, M., Ruthrof, K.X., Whinam, J., McGeoch, M., Bergstrom, D.M., Guerin, G.R., Sparrow, B., Joseph, L., Hill, S.J., Andrew, N.R., Camac, J., Bell, N., Riegler, M., Gardner, J.L., Williams, S.E., 2019. Impacts of recent climate change on terrestrial flora and fauna: some emerging Australian examples. Australian Ecology, 44: 3–27. https://doi.org/10.1111/aec.12674 Search in Google Scholar

IPCC, 2014. Climate Change 2014. Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., Meyer, L.A(eds)]. IPCC, Switzerland. 151 p. Search in Google Scholar

IUCN. 2004. National register of medicinal and aromatic plants. International Union for Nature Conservation Nepal, Kathmandu, Nepal. Search in Google Scholar

Jalal, J.S., Rawat, G.S., 2009. Habitat studies for conservation of medicinal orchids of Uttarakhand, Western Himalaya. African Journal of Plant Science, 3 (9): 200–204. Search in Google Scholar

Kaky, M., Nolan, V., Alatawi, A., Gilbert, F., 2020. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants. Ecological Informatics, 60: 101150. https://doi.org/10.1016/j.ecoinf.2020.101150 Search in Google Scholar

Lughadha, E. N., Bachman, S.P., Leão, T.C.C., Forest, F., Halley, J.M., Moat, J., Acedo, C., Bacon, K.L., Brewer, R.F.A., Gâteblé, G., Gonçalves, S.C., Govaerts, R., Hollingsworth, P.M., Krisai-Greilhuber, I., de Lirio, E.J., Moore, P.G.P., Negrão, R., Onana, J.M., Rajaovelona, L.R., Razanajatovo, H., Reich, P.B., Richards, S.L., Rivers, M.C., Cooper, A., Iganci, J., Lewis, G.P., Smidt, E.C., Antonelli, A., Mueller, G.M., Walker, B.E., 2020. Extinction risk and threats to plants and fungi. Plants People Planet, 2: 389–408. https://doi.org/10.1002/ppp3.10146 Search in Google Scholar

Marco, M.D., Harwood, T.D., Hoskins, A.J., Ware, C., Hill, S.L.L., Ferrier, S., 2019. Projecting impacts of global climate and land‐use scenarios on plant bio-diversity using compositional‐turnover modelling. Global Change Biology, 25 (8): 2763–2778. https://doi.org/10.1111/gcb.14663 Search in Google Scholar

Matteodo, M., Wipf, S., Stöckli, V., Rixen, C., Vittoz, P., 2013. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environment Research Letters, 8 (2): 024043. https://doi.org/10.1088/1748-9326/8/2/024043 Search in Google Scholar

Natta, S., Mondal, S.A., Pal, K., Mandal, S., Sahana, N., Pal, R., Pandit, G.K., Alam, B. K., Das, S.S., Biswas, S.S., Kalaivanan, N.S., 2022. Chemical composition, antioxidant activity and bioactive constituents of six native endangered medicinal orchid species from northeastern Himalayan region of India. South African Journal of Botany, 150: 248–259. https://doi.org/10.1016/j.sajb.2022.07.020 Search in Google Scholar

Nautiyal, M.C., Nautiyal, B.P., Prakash, V., 2004. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist, 24: 125–134. https://doi.org/10.1007/s10669-004-4803-z Search in Google Scholar

Noroozi, J., Moser, D., Essl, F., 2015. Diversity, distribution, ecology and description rates of alpine endemic plant species from Iranian mountains. Alpine Botany, 126 (1): 1–9. https://doi.org/10.1007/s00035-015-0160-4 Search in Google Scholar

Nunez, S., Arets, E., Alkemade, R., Verwer, C., Leemans, R., 2019. Assessing the impacts of climate change on biodiversity: is below 2 °C enough? Climatic Change, 154: 351–365. https://doi.org/10.1007/s10584-019-02420-x Search in Google Scholar

Padalia, H., Srivastava, V., Kushwaha, S.P.S., 2014. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: comparison of MaxEnt and GARP. Ecological Informatics, 22: 36–43. http://dx.doi.org/10.1016/j.ecoinf.2014.04.002 Search in Google Scholar

Parolo, G., Rossi, G., 2008. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Applied Ecology, 9: 100–107. https://doi.org/10.1016/j.baae.2007.01.005 Search in Google Scholar

Peters, M.K., Hemp, A., Appelhans, T., Becker., J.N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S.W., Frederiksen, S.B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig, M., Hemp, C., Kindeketa, W.J., Kuhnel, A., Mayr, A.V., Mwangomo, E., Ngereza, C., Njoyu, H.K., Otte, I., Pabst, H., Renner, M., Roder, J., Rutten, G., Costa, D.S., Sierra-Cornejo, N., Vollstadt, M.G.R., Dulle, H.I., Eardley, C.D., Howell, K.M., Keller, A., PETERS, R.S., Ssymank, A., Kakengi, V., Zhang, J., Bogner, C., Bohning-Gaese, K., Brandl, P., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Kuzyakov, Y., Nauss, T., Schleuning, M., Tschapka, M., Fischer, M., Steffen-Dewenter, I., 2019. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568: 88–92. https://doi.org/10.1038/s41586-019-1048-z Search in Google Scholar

Phillips, S., Anderson, R., Schapire, R., 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Search in Google Scholar

Pridgeon, A, Chase, M., Cribb, P., Rasmussen, F.N., 1999. Genera Orchidacearum. Vol. 1. Oxford, U.S.A: Oxford University Press. 230 p. Search in Google Scholar

Rana, H.K., Luo, D., Rana, S.K., Sun, H., 2020. Geological and climatic factors affect the population genetic connectivity in Mirabilis himalaica (Nyctaginaceae): insight from phylogeography and dispersal corridors in the Himalaya-Hengduan Biodiversity Hotspot. Frontiers in Plant Science, 10: 1721. https://doi.org/10.3389/fpls.2019.01721 Search in Google Scholar

Rana, S., Rana, H., Ghimire, S., 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science, 14 (3): 558–570. https://doi.org/10.1007/s11629-015-3822-1 Search in Google Scholar

Rathore, P., Roy, A., Karnatak, H., 2019. Modelling the vulnerability of Taxus wallichiana to climate changes cenarios in South East Asia. Ecological Indicators, 102: 199–207. https://doi.org/10.1016/j.ecolind.2019.02.020 Search in Google Scholar

Romshoo, S.A., Bashir, J., Rashid, I., 2020. Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models. Climate Change, 162 (3): 1473–1491. https://doi.org/10.1007/s10584-020-02787-2 Search in Google Scholar

Shaheen, H., Ibrahim, M., Ullah, Z., 2019. Spatial patterns and diversity of the alpine flora of Deosai plateau, Western Himalayas. Pakistan Journal of Botany, 51 (1): 205–212. http://dx.doi.org/10.30848/PJB2019-1(39) Search in Google Scholar

Shapoo, G.A., Kalo, Z.A., Singh, S., Ganie, A.H., Padder, B.M., 2014. Evaluation of diversity and habitat types of some orchid species growing in Kashmir Himalaya. Species, 10 (22): 8–13. Search in Google Scholar

Sharma, S., Arunachalam, K., Bhavsar, D., Kala, R., 2018. Modelling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research in Medicinal and Aromatic Plants, 10: 99–105. https://doi.org/10.1016/j.jarmap.2018.02.003 Search in Google Scholar

Shrestha, B., Tsiftsis, S., Chapagain, D.J., Khadka, C., Bhattarai, P., Kayastha, Shrestha, N., Alicja, Kolanowska, M., Kindlmann, P., 2021 Suitability of habitats in Nepal for Dactylorhiza hatagirea now and under predicted future changes in climate. Plants, 10 (3): 467. https://doi.org/10.3390/plants10030467 Search in Google Scholar

Singh, L., Kanwar, N., Bhatt, I.D., Nandi, S.K., Bisht, A.K., 2022. Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios. PLoS ONE, 17 (6): e0269673. https://doi.org/10.1371/journal.pone.0269673 Search in Google Scholar

Singh, L., Bhatt, I.D., Negi, V.S., Nandi, S.K., Rawal, R.S., Bisht, A.K., 2021. Population status, threats, and conservation options of the orchid Dactylorhiza hatagirea in Indian Western Himalaya. Regional Environmental Change, 21: 40. https://doi.org/10.1007/s10113-021-01762-6 Search in Google Scholar

Singh, R.M., Chandra, J.T., Rinchen, D., Ayyanadar, A., Prakash, Y.O., 2017. Struggle from subsistence to sustainability and threat to local biodiversity under changing climate: a case study on Ladakh folk agriculture. Climate Change and Environmental Sustainability, 5 (1): 59–65. https://doi.org/10.5958/2320-42X.2017.00006.0 Search in Google Scholar

Smeraldo, S., Di Febbraro, M., Bosso, L., Flaquer, C., Guixé, D., Lisón, F., Meschede, A., Juste, J., Prüger, J., Puig-Montserrat, X., Russo, D., 2018. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodiversity and Conservation, 27: 2425–2441, https://doi.org/10.1007/s10531-018-1545-7 Search in Google Scholar

Sorbe, F., Gränzig, T., Förster, M., 2023. Evaluating sampling bias correction methods for invasive species distribution modeling in Maxent. Ecological Informatics, 76: 102124. https://doi.org/10.1016/j.ecoinf.2023.102124 Search in Google Scholar

Štípková, Z., Tsiftsis, S., Kindlmann, P., 2024. Is the GBIF appropriate for use as input in models of predicting species distributions? Study from the Czech Republic. Nature Conservation Research, 9 (1): 84–95. https://dx.doi.org/10.24189/ncr.2024.008 Search in Google Scholar

Stockwell, D., Peterson, A., 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148 (1): 1–13. https://doi.org/10.1016/S0304-3800(01)00388-X Search in Google Scholar

Swarts, N.D., Dixon, K.W., 2009. Terrestrial orchid conservation in the age of extinction. Annals of Botany,104 (3): 543–556.https://dx.doi.org/10.1093%2Faob%2Fmcp025 Search in Google Scholar

Thakur, N., Kaur, R., 2013. Molecular characterization of Dactylorhiza hatagirea (D. Don) Soó - A critically endangered medicinal orchid. International Journal of Medicinal and Aromatic Plants, 3 (2): 184–190. Search in Google Scholar

Thakur, D., Rathore, N., Sharma, M.K., Prakash, O., Chawla, A., 2021. Identification of ecological factors affecting the occurrence and abundance of Dactylorhiza hatagirea (D. Don) Soó in the Himalaya. Journal of Applied Research on Medicinal and Aromatic Plants, 20: 100286. https://doi.org/10.1016/j.jarmap.2020.100286 Search in Google Scholar

Venne, S., Currie, D.J., 2021. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Diversity and Distributions, 27: 873–886. https://doi.org/10.1111/ddi.13238 Search in Google Scholar

Vij, S.P., 2002. Orchids and tissue culture: current status. In Role of plant tissue culture in biodiversity conservation and economic development. Nainital, India: Gyanodaya Prakashan, p. 491–502. Search in Google Scholar

Voldoire, A., Sanchez-Gomez, E., Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., 2013. The CNRMCM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40 (10): 2091–2121. https://doi.org/10.1007/s00382-011-1259-y Search in Google Scholar

Wani, I.A., Khan, S., Verma, S. Al-Misned, A., Shafik, H.M., El-Serehy, H., 2022. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Scientific Reports, 12: 13205 (2022). https://doi.org/10.1038/s41598-022-16837-5 Search in Google Scholar

Wani, I.A., Verma, S., Mushtaq, S., Alsahli, A.A., Alyemeni, M.N., Tariq, M., Pant, S., 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soó: A conservation approach for critically endangered medicinal orchid. Saudi Journal of Biological Sciences, 28 (4): 2109–2122. https://doi.org/10.1016/j.sjbs.2021.01.054 Search in Google Scholar

Warghat, A.R., Bajpai, P.K., Sood, H., Chaurasia, O.P., Srivastava, R.B., 2012. Morphometric analysis of Dactylorhiza hatagirea (D. Don), a critically endangered orchid in cold desert Ladakh region of India. African Journal of Biotechnology, 11 (56): 11943–11951. https://doi.org/10.5897/AJB11.4242 Search in Google Scholar

Warghat, A.R., Bajpai, P.K., Srivastava, R.B., Chaurasia, O.P., Sood, H., 2013. Population gennetic structure and conservation of small fragmented location of Dactylorhiza hatagirea in Ladakh region of India. Scientia Horticulturae, 164: 448–454. Search in Google Scholar

Warren, D.L., Seifert, S.N., 2011. Ecological niche modelling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21: 335–342. http://dx.doi.org/10.2307/29779663 Search in Google Scholar

Weldemariam, E.Ch., Dejene, S.W.D., 2021. Predicting invasion potential of Senna didymobotrya (Fresen.) Irwin & Barneby under the changing climate in Africa. Ecological Processes, 10: article number 5 (2021). https://doi.org/10.1186/s13717-020-00277-y Search in Google Scholar

Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forch-hammer, M.C., Grytnes, J.A., Guisan, A., Heikkinen, R.K., Hoye, T.T., Kuhn, I., Luoto, M., Maiorano, L., Nilsson, M.C., Normand, S., Ockinger, E., Schimdt, N.M., Termansen, M., Timmermann, A., Wardle, D.A., Asstrup, P., Svenning, J.C., 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88 (1): 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x Search in Google Scholar

Xu, D., Zhuo, Z., Wang, R., Ye, M., Pu, B., 2019. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation, 19: e00691. https://doi.org/10.1016/j.gecco.2019.e00691 Search in Google Scholar

Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., Roy, P.S. 2013. Maxent modeling for predicting the potential dis tribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51: 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004 Search in Google Scholar

Yi, Y., Cheng, X., Wieprecht, S., Tang, C., 2014. Comparison of habitat suitability models using different habitat suitability evaluation methods. Ecological Engineering, 71: 335–345. https://doi.org/10.1016/j.ecoleng.2014.07.034 Search in Google Scholar

Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, H., Obata, A., Nakano, H., Koshiro, T., Ose, T., Kitoh, A., 2012. A new global climate model of the meteorological research institute: MRI-CGCM3—model description and basic performance. Journal of Meteorological Society of Japan. Series II, 90A: 23–64. https://doi.org/10.2151/jmsj.2012-A02 Search in Google Scholar

Zlatanov, T., Elkin, C., Irauschek, F., Lexer M.J., 2017. Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Regional Environmental Change, 17: 79–91. https://doi.org/10.1007/s10113-015-0869-z Search in Google Scholar

Zhong, Y., Xue, Z., Jiang, M., Liu, B., Wang, G., 2021. The application of species distribution modeling in wetland restoration: a case study in the Songnen Plain, Northeast China. Ecological Indictors, 121: 107137. https://doi.org/10.1016/j.ecolind.2020.107137 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Ciencias de la vida, Botánica, Zoología, Ecología, Ciencias de la vida, otros