Otwarty dostęp

Effect of increased ambient temperature on seasonal generation number in Lucilia sericata (Diptera, Calliphoridae)


Zacytuj

Amendt, J., Campobasso, C.P., Gaudry, E., Reiter, C., Le Blanc, H.N., J.R., Hall, M., 2006. Best practice in forensic entomology – standards and guidelines. International Journal of Legal Medicine, 121: 90–104. https://doi.org/10.1007/s00414-006-0086-x10.1007/s00414-006-0086-x Search in Google Scholar

Amendt, J., Krettek, R., Zehner, R., 2004. Forensic entomology. Naturwissenschaften, 91: 51–65. https://doi.org/10.1007/s00114-003-0493-510.1007/s00114-003-0493-5 Search in Google Scholar

Avtaeva, T., Skripchinsky, A., Brygadyrenko, V., 2020. Changes in the range of Pterostichus melas and P. fornicatus (Coleoptera, Carabidae) on the basis of climatic modeling. Baltic Journal of Coleopterology, 20: 109–124. Search in Google Scholar

Avtaeva, T.A., Sukhodolskaya, R.A., Brygadyrenko, V.V., 2021. Modeling the bioclimatic range in Pterostichus melanarius (Coleoptera, Carabidae) in conditions of global climate change. Biosystems Diversity, 29: 140-150. https://doi.org/10.15421/01212010.15421/012120 Search in Google Scholar

Avtaeva, T.A., Sukhodolskaya, R.A., Skripchinsky, A.V., Brygadyrenko, V.V., 2019. Range of Pterostichus oblongopunctatus (Coleoptera, Carabidae) in conditions of global climate change. Biosystems Diversity, 27: 76–84. https://doi.org/10.15421/01191210.15421/011912 Search in Google Scholar

Baranovski, B.А., Karmyzova, L.А., Roshchyna, N.O., Ivanko, I.A., Karas, O.G., 2020. Ecological-climatic characteristics of the flora of a floodplain landscape in Southeastern Europe. Biosystems Diversity, 28: 98–112. https://doi.org/10.15421/01201410.15421/012014 Search in Google Scholar

Baron, R.W., Colwell, D.D., 1991. Mammalian immune responses to myiasis. Parasitology Today, 7 (12): 353–355. https://doi.org/10.1016/0169-4758(91)90219-E10.1016/0169-4758(91)90219-E Search in Google Scholar

Burda, R.I., Koniakin, S.N., 2019. The non-native woody species of the flora of Ukraine: introduction, naturalization and invasion. Biosystems Diversity, 27: 276–290. https://doi.org/10.15421/01193710.15421/011937 Search in Google Scholar

Catts, E.P., 1992. Problems in estimating the postmortem interval in death investigations. Journal of Agricultural Entomology, 9: 245–255. Search in Google Scholar

Cervantès, L., Dourel, L., Gaudry, E., Pasquerault, T., Vincent, B., 2017. Effect of low temperature in the development cycle of Lucilia sericata (Meigen) (Diptera, Calliphoridae): implications for the minimum postmortem interval estimation. Forensic Sciences Research, 3: 52–59. https://doi.org/10.1080/20961790.2017.140683910.1080/20961790.2017.1406839619713930483651 Search in Google Scholar

Charabidze, D., Bourel, B., Gosset, D., 2011. Larval-mass effect: characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Science International, 211: 61–66. https://doi.org/10.1016/j.forsciint.2011.04.01610.1016/j.forsciint.2011.04.01621601389 Search in Google Scholar

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., Wehner, M., 2013. Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013: the physical science basis: contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, p. 1029–1136.10.1017/CBO9781107415324.024 Search in Google Scholar

Gallagher, M.B., Sandhu, S., Kimsey, R., 2010. Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). Journal of Forensic Sciences, 55: 438–442. https://doi.org/10.1111/j.1556-4029.2009.01285.x10.1111/j.1556-4029.2009.01285.x20102471 Search in Google Scholar

Grassberger, M., Reiter, C., 2001. Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Science International, 120: 32–36. https://doi.org/10.1016/S0379-0738(01)00413-310.1016/S0379-0738(01)00413-3 Search in Google Scholar

Greenberg, B., 1991. Flies as forensic indicators. Journal of Medical Entomology, 28: 565–577. https://doi.org/10.1093/jmedent/28.5.56510.1093/jmedent/28.5.565 Search in Google Scholar

Hwang, C.C., Turner, B.D., 2009. Small-scaled geographical variation in life-history traits of the blowfly Calliphora vicina between rural and urban populations. Entomologia Experimentalis et Applicata, 132: 218–224. https://doi.org/10.1111/j.1570-7458.2009.00891.x10.1111/j.1570-7458.2009.00891.x Search in Google Scholar

Kamal, A.S., 1958. Comparative study of thirteen species of sarcosaprophagous Calliphoridae and Sarcophagidae (Diptera) I. Bionomics. Annals of the Entomological Society of America, 51: 261–271. https://doi.org/10.1093/aesa/51.3.26110.1093/aesa/51.3.261 Search in Google Scholar

Komlyk, V.O., Brygadyrenko, V.V., 2019. Morphological variability of Bembidion minimum (Coleoptera, Carabidae) populations under the influence of natural and anthropogenic factors. Biosystems Diversity, 27: 250–269. https://doi.org/10.15421/01193510.15421/011935 Search in Google Scholar

Kozak, V.M., Romanenko, E.R., Brygadyrenko, V.V., 2020. Influence of herbicides, insecticides and fungicides on food consumption and body weight of Rossiulus kessleri (Diplopoda, Julidae). Biosystems Diversity, 28: 272–280. https://doi.org/10.15421/01203610.15421/012036 Search in Google Scholar

Marchenko, M.I., 2001. Medicolegal relevance of cadaver entomofauna for the determination of the time of death. Forensic Science International, 120: 89–109. https://doi.org/10.1016/S0379-0738(01)00416-910.1016/S0379-0738(01)00416-9 Search in Google Scholar

Niederegger, S., Pastuschek, J., Mall, G., 2010. Preliminary studies of the influence of fluctuating temperatures on the development of various forensically relevant flies. Forensic Science International, 199: 72–78. https://doi.org/10.1016/j.forsciint.2010.03.01510.1016/j.forsciint.2010.03.01520382488 Search in Google Scholar

Pearse, B., Peucker, S., 1991. Comparison of a liquid and a powder insecticidal dressing to aid healing and prevent flystrike of mulesing wounds in lambs. Australian Veterinary Journal, 68 (5): 163–164. https://doi.org/10.1111/j.1751-0813.1991.tb03169.x10.1111/j.1751-0813.1991.tb03169.x1883292 Search in Google Scholar

Pitts, K.M., Wall, R., 2005. Winter survival of larvae and pupae of the blowfly, Lucilia sericata (Diptera: Calliphoridae). Bulletin of Entomological Research, 95: 179–186. https://doi.org/10.1079/BER200434910.1079/BER200434915960872 Search in Google Scholar

Reibe, S., Doetinchem, P.V., Madea, B., 2010. A new simulation-based model for calculating post-mortem intervals using developmental data for Lucilia sericata (Dipt.: Calliphoridae). Parasitology Research, 107: 9–16. https://doi.org/10.1007/s00436-010-1879-x10.1007/s00436-010-1879-x20440626 Search in Google Scholar

Roe, A., Higley, L.G., 2015. Development modeling of Lu-cilia sericata (Diptera: Calliphoridae). PeerJ, 3: e803. https://doi.org/10.7717/peerj.80310.7717/peerj.803435866225780761 Search in Google Scholar

Shulman, M.V., Pakhomov, O.Y., Brygadyrenko, V.V., 2017. Effect of lead and cadmium ions upon the pupariation and morphological changes in Calliphora vicina (Diptera, Calliphoridae). Folia Oecologica, 44: 28–37. https://doi.org/10.1515/foecol-2017-000410.1515/foecol-2017-0004 Search in Google Scholar

Tachibana, S.-I., Numata, H., 2004. Effects of temperature and photoperiod on the termination of larval diapause in Lucilia sericata (Diptera: Calliphoridae). Zoological Science, 21: 197–202. https://doi.org/10.2108/zsj.21.19710.2108/zsj.21.19714993832 Search in Google Scholar

Tarone, A.M., Picard, C.J., Spiegelman, C., Foran, D.R., 2011. Population and temperature effects on Lucilia sericata (Diptera: Calliphoridae) body size and minimum development time. Journal of Medical Entomology, 48: 1062–1068. https://doi.org/10.1603/ME1100410.1603/ME11004 Search in Google Scholar

Turchetto, M., Vanin, S., 2004. Forensic entomology and climatic change. Forensic Science International, 146: S207–S209. https://doi.org/10.1016/j.forsciint.2004.09.06410.1016/j.forsciint.2004.09.06415639577 Search in Google Scholar

Turchetto, M., Vanin, S., 2009. Climate change and forensic entomology. In Amendt J., Goff M., Campobasso C., Grassberger M. (eds). Current concepts in forensic entomology. Dordrecht: Springer, p. 327–351. https://doi.org/10.1007/978-1-4020-9684-6_1510.1007/978-1-4020-9684-6_15 Search in Google Scholar

Turner, B., Howard, T., 1992. Metabolic heat generation in dipteran larval aggregations: a consideration for forensic entomology. Medical and Veterinary Entomology, 6: 179–181. https://doi.org/10.1111/j.1365-2915.1992.tb00602.x10.1111/j.1365-2915.1992.tb00602.x1421493 Search in Google Scholar

Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., 2011. The representative concentration pathways: an overview. Climatic Change, 109: 5. https://doi.org/10.1007/s10584-011-0148-z10.1007/s10584-011-0148-z Search in Google Scholar

Wang, M., Wang, Y., Hu, G., Wang, Y., Xu, W., Wu, M., Wang, J., 2020. Development of Lucilia sericata (Diptera: Calliphoridae) under constant temperatures and its significance for the estimation of time of death. Journal of Medical Entomology, 57: 1373–1381. https://doi.org/10.1093/jme/tjaa04610.1093/jme/tjaa04632173734 Search in Google Scholar

Zazharskyi, V.V., Davydenko, P.О., Kulishenko, O.М., Borovik, I.V., Brygadyrenko, V.V., 2019. Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27: 163–169. https://doi.org/10.15421/01192210.15421/011922 Search in Google Scholar

eISSN:
1338-7014
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other, Plant Science, Zoology, Ecology