1. bookTom 48 (2021): Zeszyt 2 (July 2021)
Informacje o czasopiśmie
Pierwsze wydanie
16 Apr 2017
Częstotliwość wydawania
2 razy w roku
Otwarty dostęp

The effect of long-term CO2 enrichment on carbon and nitrogen content of roots and soil of natural pastureland

Data publikacji: 31 Jul 2021
Tom & Zeszyt: Tom 48 (2021) - Zeszyt 2 (July 2021)
Zakres stron: 180 - 190
Otrzymano: 22 Dec 2020
Przyjęty: 10 Jun 2021
Informacje o czasopiśmie
Pierwsze wydanie
16 Apr 2017
Częstotliwość wydawania
2 razy w roku

Adams, M., Attiwill, P., 1986. Nutrient cycling and nitrogen mineralization in eucalyptus forests of southeastern Australia. II. Indices of nitrogen mineralization. Plant and Soil, 92: 341–362. https://doi.org/10.1007/BF0237248310.1007/BF02372483 Search in Google Scholar

Ainsworth, E.A, Long, S.P., 2005. What have we learned from 15 years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165: 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x10.1111/j.1469-8137.2004.01224.x Search in Google Scholar

Al-Traboulsi, M., 1999. Responses of plant roots and soil of pastureland to increasing carbon dioxide concentration. PhD thesis. McGill University, Montréal, Canada. 80 p. Search in Google Scholar

Arnone, III.J.A., Hirschel, G., 1997. Does fertilizer application alter the effects of elevated CO2on Carex leaf litter quality and in situ decomposition in an alpine grassland. Acta Oecologica, 18: 201–206. https://doi.org/10.1016/S1146-609X(97)80006-910.1016/S1146-609X(97)80006-9 Search in Google Scholar

Arnone, J., Bohlen, P., 1998. Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2. Oecologia, 116: 331–335. https://doi.org/10.1007/s00442005059410.1007/s004420050594 Search in Google Scholar

Baggs, E., Ritcher, M., Cadisch, G., Hartwig, U., 2003. Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biology and Biochemistry, 35: 729–732. https://doi.org/10.1016/S0038-0717(03)00083-X10.1016/S0038-0717(03)00083-X Search in Google Scholar

Ball, A., 1997. Microbial decomposition at elevated CO2levels: effect of litter quality. Global Change Biology, 3: 379–386. https://doi.org/10.1046/j.1365-2486.1997.t01-1-00089.x10.1046/j.1365-2486.1997.t01-1-00089.x Search in Google Scholar

Barnard, R., Barthes, L., Leadley, PW., 2006. Short-term uptake of 15N by a grass and soil micro-organisms after long-term exposure to elevated CO2. Plant and Soil, 280: 91–99. https://doi.org/10.1007/s11104-005-2553-410.1007/s11104-005-2553-4 Search in Google Scholar

Barnard, R., Leadley, P., Lensi, R., Barthes, L., 2005. Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2: a study in microcosms of Holcus lanatus. Acta Oecologica, 27: 171–178. https://doi.org/10.1016/j.actao.2004.11.00510.1016/j.actao.2004.11.005 Search in Google Scholar

Baxter, R., Ashenden, T., Farrar, J., 1997. Effect of elevated CO2and nutrient status on growth, dry matter partitioning and nutrient content of Poa alpina var. vivipara L. Journal of Experimental Botany, 48 (312): 1477–1486. https://doi.org/10.1093/jxb/48.7.147710.1093/jxb/48.7.1477 Search in Google Scholar

Bazzaz, F.A., 1990. The response of natural ecosystems to the rising global CO2levels. Annual Review of Ecology, Evolution and Systematics, 21: 167–96. https://doi.org/10.1146/annurev.es.21.110190.00112310.1146/annurev.es.21.110190.001123 Search in Google Scholar

Bazzaz, F.A, Bassow, S.L., Berntson, G.M., Thomas, S.C., 1996. Elevated CO2and terrestrial vegetation: implications for and beyond the global carbon budget. In Walker, B., Steffen, W. (eds). Global change and terrestrial ecosystems. Cambridge: Cambridge University Press, p. 43–76. Search in Google Scholar

Berg, B., 1984. Decomposition of root litter and some factors regulating the process: long-term root decomposition in a Scots pine forest. Soil Biology and Biochemistry, 16: 609–617. https://doi.org/10.1016/0038-0717(84)90081-610.1016/0038-0717(84)90081-6 Search in Google Scholar

Bloom, A., Asenio, J., Randall, L., Rachmilevitch, S., Cousins, A., Carlisle, E., 2012. CO2 enrichment inhibits shoot nitrate assimilation in C2 but not C2 plants and slows growth under nitrate in C2 plants. Ecology, 93: 355–367. https://doi.org/10.1890/11-0485.110.1890/11-0485.1 Search in Google Scholar

Bloom, A., Burger, M., Kimball, B., Pinter, P., 2014. Nitrate assimilation is inhibited by elevated CO2in field-grown wheat. Nature Climate Change, 4 (6): 477–480. https://doi.org/10.1038/nclimate218310.1038/nclimate2183 Search in Google Scholar

Blunder, J., Arndt, D.S., 2018. State of the climate 2018, a look at 2018: takeaway points from the State of the climate supplement. Bulletin of the American Meteorological Society, 100: 1625–1636. https://doi.org/10.1175/BAMS-D-19-0193.110.1175/BAMS-D-19-0193.1 Search in Google Scholar

Cha, S., Chae, H., Lee, S., Shim, L., 2017. Effect of elevated atmospheric CO2concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla. PLoS One, 12 (2): e0171197. https://doi.org/10.1371/journal.pone.017119710.1371/journal.pone.0171197 Search in Google Scholar

Cheng, W., 1999. Rhizosphere feedbacks in elevated CO2. Tree Physiology, 19: 313–320. https://doi.org/10.1093/treephys/19.4-5.31310.1093/treephys/19.4-5.313 Search in Google Scholar

Cotrufo, M., Ineson, P., 1995. Effects of enhanced atmospheric CO2and nutrient supply on the quality and subsequent decomposition of the fine roots of Betula pendula Roth, and Picea sitchensis (Bong.) Carr. Plant and Soil, 170: 267–277. https://doi.org/10.1007/BF0001047910.1007/BF00010479 Search in Google Scholar

Cotrufo, M., Ineson, P., Scott, A., 1998. Elevated CO2reduces the nitrogen concentration of plant tissues. Global Change Biology, 4: 43–54. https://doi.org/10.1046/j.1365-2486.1998.00101.x10.1046/j.1365-2486.1998.00101.x Search in Google Scholar

Couteaux, M., Mousseau, M., Celerier, M., Bottner, P., 1991. Increased atmospheric CO2litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos, 61: 54–64.10.2307/3545406 Search in Google Scholar

Curtin, D., Campbell, C.A., Jalil, A., 1998. Effects of acidity on mineralization: pH-dependence of organic mineralization in weakly acidic soils. Soil Biology and Biochemistry, 30 (1): 57–64. https://doi.org/10.1016/S0038-0717(97)00094-110.1016/S0038-0717(97)00094-1 Search in Google Scholar

Curtis, P.S., Drake, B.G., Whigham, D.F., 1989. Nitrogen and carbon dynamics in C2and C2estuarine marsh plants grown under elevated CO2 in situ. Oecologia, 78: 297–301. https://doi.org/10.1007/BF0037910110.1007/BF0037910128312573 Search in Google Scholar

Curtis, P., O’neill, E., Teeri, J., Zak, P., Pregitzer, K., 1994. Below-ground responses to rising atmospheric CO2: implications for plants, soil biota and ecosystem processes. Plant and Soil, 165: 1–6. https://doi.org/10.1007/BF0000995710.1007/BF00009957 Search in Google Scholar

Curtis, P., Wang, X., 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 113: 299–313. https://doi.org/10.1007/s00442005038110.1007/s00442005038128307814 Search in Google Scholar

Diaz, S., Grime, J., Harris, J., McPherson, E., 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature, 364: 616–617. https://doi.org/10.1038/364616a010.1038/364616a0 Search in Google Scholar

Dijkstra, F., Pendall, E., Mosier, A., King, J., Milchunas, D., Morgan, J., 2008. Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Functional Ecology, 22 (6): 975–982. https://doi.org/10.1111/j.1365-2435.2008.01398.x10.1111/j.1365-2435.2008.01398.x Search in Google Scholar

Easlon, H., Bloom, A., 2013. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling. Frontiers in Plant Science, 4: 1–6. https://doi.org/10.3389/fpls.2013.0030410.3389/fpls.2013.00304373942323983674 Search in Google Scholar

Fargione, J., Tilman, D., Dybzinski, R., Lambers, J.H.R., Clark, C., Harpole, W.S., Knops, J.M.H., Reich, P.B., Loreau, M. From selection to complementarily: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society B-Biological Sciences, 274: 871–876. https://doi.org/10.1098/rspb.2006.035110.1098/rspb.2006.0351209397917251113 Search in Google Scholar

Farrar, J., Hawes, M., Jones, D., Lindow, S., 2003. How roots control the flux of carbon to the rhizosphere. Ecology, 84: 827–833. https://doi.org/10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 Search in Google Scholar

Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J.A., Barraclough, A.D., Hovenden, M.J., 2016. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proceedings of the National Academy of Sciences of the United States of America, 113: 12757–12762. https://doi.org/10.1073/pnas.160503611310.1073/pnas.1605036113511165427791074 Search in Google Scholar

Finzi, A.C., Norby, R.J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W.E., Hoosbeek, M.R., Iversen, C.M., Jackson, R.B., Kubiske, M.E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D.R., Schlesinger, W.H., Ceulemans, R., 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences of the United States of America, 104: 14014–14019. https://doi.org/10.1073/pnas.070651810410.1073/pnas.0706518104195580117709743 Search in Google Scholar

Fitter, H., Graves, J.D., Wolfenden, J., Self, G.K., Brown, T.K., Bogie, D., Mansfield, T.A., 1997. Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. New Phytologist, 137: 247–255. https://doi.org/10.1046/j.1469-8137.1997.00804.x10.1046/j.1469-8137.1997.00804.x33863180 Search in Google Scholar

Follett, R.F., 1993. Global climate change, U.S agriculture, and carbon dioxide. Journal of Production Agriculture, 6 (2): 181–190. https://doi.org/10.2134/jpa1993.018110.2134/jpa1993.0181 Search in Google Scholar

Franzluebbers, A., Stuedemann, J., Schomberg, H., Wilkinson, S., 2000. Soil organic C and N pools under long-term pasture management in the Southern Piedmont, USA. Soil Biology and Biochemistry, 32: 469–478. https://doi.org/10.1016/S0038-0717(99)00176-510.1016/S0038-0717(99)00176-5 Search in Google Scholar

Franzluebbers, A.J., 2010. Soil organic carbon in managed pastures of the southeastern United States of America. In Abberton, M., Conant, R., Batello, C. (eds). Grassland carbon sequestration: management, policy and economics. Proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change. Rome, April 2009. Rome: Food and Agriculture Organization of the United Nations, p. 163–175. Search in Google Scholar

Fu, M.H., Xu, X.C., Tabatabai, M.A., 1987. Effect of pH on nitrogen mineralization in crop-residue-treated soils. Biology and Fertility of Soils, 5: 115–119. https://doi.org/10.1007/BF0025764510.1007/BF00257645 Search in Google Scholar

Gill, R., Anderson, L., Polley, H., Johnson, H., Jackson, R., 2006. Potential nitrogen constrains on soil carbon sequestration under low and elevated atmospheric CO2. Ecology, 87: 41–52.10.1890/04-1696 Search in Google Scholar

Ipcc, 2001. Climate change 2001: the scientific basis. Summary for policymakers. Cambridge: Cambridge University Press. 98 p. Search in Google Scholar

Ipcc, 2007. Climate change 2007: mitigation of climate change: Working Group III contribution to the Fourth Assessment Report of the IPCC. Cambridge: University Press. Search in Google Scholar

Janík, R., Bublinec, E., Dubová, M., 2015. Space-time patterns of soil pH and conductivity in submountain beech ecosystems in the West Carpathians. Folia Oecologica, 41 (2): 141–145.10.11118/beskyd201407020081 Search in Google Scholar

Kimball, B.A., Kobayashi, K., Bindi, M., 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 77: 293–368. https://doi.org/10.1016/S0065-2113(02)77017-X10.1016/S0065-2113(02)77017-X Search in Google Scholar

King, J., Pregitzer, K., Zak, D., Kubiske, M., Holmes, W., 2003. Correlation of foliage and litter chemistry of sugar maple, Acer saccharum, as affected by elevated CO2 and varying N availability and effects on decomposition. Oikos, 94 (3): 403–416.10.1034/j.1600-0706.2001.940303.x Search in Google Scholar

King, J., Pregitzer, K., Zak, D., Sober, J., Isebrands, J., Dickson, R., Hendrey, G., Karnosky, D., 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia, 128: 237–250. https://doi.org/10.1007/s004420100656 https://doi.org/10.1034/j.1600-0706.2001.940303.x10.1007/s00442010065628547473 Search in Google Scholar

King, J.S., Thomas, R.B., Strain, B.R., 1997. Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO2, temperature, and nitrogen. Plant and Soil, 195: 107–119. https://doi.org/10.1023/A:100429143074810.1023/A:1004291430748 Search in Google Scholar

Knoepp, J.D., Swank, W.T., 1995. Comparison of available soil nitrogen assays in control and burned forested sites. Soil Science Society of America Journal, 59 (6): 1750–1754.10.2136/sssaj1995.03615995005900060035x Search in Google Scholar

Koch, G., 1988. Acquisition and allocation of carbon and nitrogen in the wild radish (Raphanus sativus x raphanistrum, Brassicacae). PhD thesis. Stanford University, Department of Biological Sciences. 300 p. Search in Google Scholar

Körner, C., 2003. Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Philosophical transactions of the Royal Society of London, 361: 2023–2041. https://doi.org/10.1098/rsta.2003.124110.1098/rsta.2003.124114558907 Search in Google Scholar

Kuzyakov, Y., Horwathc, W.R., Dorodnikova, M., Blagodatskayaa, E., 2019. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biology and Biochemistry, 128: 66–78. https://doi.org/10.1016/j.soilbio.2018.10.00510.1016/j.soilbio.2018.10.005 Search in Google Scholar

Liu, J., Sefah, G., Apreku, T., 2018. Effects of elevated atmospheric CO2 and nitrogen fertilization on nitrogen cycling in experimental riparian wetlands. Water Science and Engineering, 11 (1): 39–45. https://doi.org/10.1016/j.wse.2017.05.00510.1016/j.wse.2017.05.005 Search in Google Scholar

Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., 2004. Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, 55: 591–628. https://doi.org/10.1146/annurev.arplant.55.031903.14161010.1146/annurev.arplant.55.031903.14161015377233 Search in Google Scholar

Martens, C., Hickler, T., Davis-Reddy, C., Engelbrecht, F., Higgins, S., Maltitz, G.P., Midgley, G.F., Pfeiffer, M., Scheiter, S., 2021. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Global Change Biology, 27:340–358. https://doi.org/10.1111/gcb.1539010.1111/gcb.1539033037718 Search in Google Scholar

Mathias, J.M., Thomas, R.B., 2021. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proceedings of the National Academy of Sciences, 118 (7): 1–9. https://doi.org/10.1073/pnas.201428611810.1073/pnas.2014286118789630933558233 Search in Google Scholar

Moser, G., Gorenflo, A., Brenzinger, K., Keidel, L., Braker, G., Marhan, S., Clough, T.J., Muller, C., 2018. Explaining the doubling of N2O emissions under elevated CO2 in the Giessen FACE via in-field 15N tracing. Global Change Biology, 24: 3897–3910. https://doi.org/10.1111/gcb.1413610.1111/gcb.1413629569802 Search in Google Scholar

Müller, C., Rütting, T., Abbasi, M., Laughlin, R., Kammann, C., Clough, T., Sherlock, R., Kattge, J., Jäger, H., Watson, C., Stevens, J., 2009. Effects of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biology and Biochemistry, 41: 1996–2001. https://doi.org/10.1016/j.soilbio.2009.07.00310.1016/j.soilbio.2009.07.003 Search in Google Scholar

Norby, R.J., Ledford, J., Reilly, C.D., Miller, N.E., O’neill, E.G., 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Science of the United States of America, 101: 9689–9693. https://doi.org/10.1073/pnas.040349110110.1073/pnas.040349110147073615210962 Search in Google Scholar

Norby, R., Pastor, J., Mellilo, J., 1986. Carbon-nitrogen interactions in CO2- enriched white oak: physiological and long term perspectives. Tree Physiology, 2: 233–241. https://doi.org/10.1093/treephys/2.1-2-3.23310.1093/treephys/2.1-2-3.23314975857 Search in Google Scholar

Nowak, R.S., Ellsworth, D.S., Smith, S.D., 2004. Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162: 253–280. https://doi.org/10.1111/j.1469-8137.2004.01033.x10.1111/j.1469-8137.2004.01033.x Search in Google Scholar

Owensby, C., Coyne, P., Auen, L., 1993. Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Plant Cell and Environment, 16: 843–850. https://doi.org/10.1111/j.1365-3040.1993.tb00506.x10.1111/j.1365-3040.1993.tb00506.x Search in Google Scholar

Overdieck, D., Reining, F., 1986. Effects of atmospheric CO2 enrichment on perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) competing in managed model-ecosystems. I: Phytomass production. Oecologia Plantarum, 7 (4): 357–366. Search in Google Scholar

Paterson, E., Hall, J.M., Rattray, E.A., Griffiths, B.S., Ritz, K., Killham, K., 1997. Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biology, 3: 363–377. https://doi.org/10.1046/j.1365-2486.1997.t01-1-00088.x10.1046/j.1365-2486.1997.t01-1-00088.x Search in Google Scholar

Paterson, E., Rattary, E., Killham, K., 1996. Effect of elevated atmospheric CO2 concentration on C-partitioning and rhizosphere C-flow for three plant species. Soil Biology and Biochemistry, 28 (2): 195–201. https://doi.org/10.1016/0038-0717(95)00125-510.1016/0038-0717(95)00125-5 Search in Google Scholar

Potvin, C., Vasseur, L., 1997. Long term CO2 enrichment of a pasture community: species richness, dominance, and succession. Ecology, 78 (3): 666–677. https://doi.org/10.1890/0012-9658(1997)078[0666:LTCEOA]2.0.CO;2 Search in Google Scholar

Powlson, D.S., Whitmore, A.P., Goulding, K.W., 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science, 62: 42–55. https://doi.org/10.1111/j.1365-2389.2010.01342.x10.1111/j.1365-2389.2010.01342.x Search in Google Scholar

Reich, P., Hungate, B., Lou, Y., 2006. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution and Systematics, 37: 611–636. https://doi.org/10.1146/annurev.ecolsys.37.091305.11003910.1146/annurev.ecolsys.37.091305.110039 Search in Google Scholar

Robinson, D., Conroy, J.P., 1999. A possible plant-mediated feedback between elevated CO2, denitrification and the enhanced greenhouse effect. Soil Biology and Biochemistry, 31: 43–53. https://doi.org/10.1016/S0038-0717(98)00102-310.1016/S0038-0717(98)00102-3 Search in Google Scholar

Rogers, A., Fischer, B.U., Bryant, J., Frehner, M., Blum, H., Rains, C.A., Long, S.P., 1998. Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiology, 118: 683–689. https://doi.org/10.1104/pp.118.2.68310.1104/pp.118.2.683 Search in Google Scholar

Rogers, H.H., Runion, G.B., Krupa, S.V., 1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution, 83: 155–189. https://doi.org/10.1016/0269-7491(94)90034-510.1016/0269-7491(94)90034-5 Search in Google Scholar

Runion, G.B., Curl, E.A., Rogers, H.H., Backman, P.A., Rodriguez-Kabana, R., Helms, B.E., 1994. Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agricultural and Forest Meteorology, 70: 117–130. https://doi.org/10.1016/0168-1923(94)90051-510.1016/0168-1923(94)90051-5 Search in Google Scholar

Runion, G.B., Torbert, H.A., Prior, S.A., Rogers, H.H., 2009. Effects of elevated atmospheric carbon dioxide on soil carbon in terrestrial ecosystems of the southeastern US. In Lal, R., Follett, R.F. (eds). Soil carbon sequestration and the greenhouse effect. SSSA Special Publication, 57. Madison, WI: Soil Science Society of America, p. 233–262. Search in Google Scholar

Rütting, T., Clough, T., Müller, C., Lieffering, M., Newton, P., 2010. Ten years of elevated atmospheric CO2 alters soil N transformations in a sheep-grazed pasture. Global Change Biology, 16: 2530–2542. https://doi.org/10.1111/j.1365-2486.2009.02089.x10.1111/j.1365-2486.2009.02089.x Search in Google Scholar

Rütting, T, Andresen, L.C., 2015. Nitrogen cycle responses to elevated CO2 depend on ecosystem nutrient status. Nutrient Cycling in Agroecosystems, 101: 285–294. https://doi.org/10.1007/s10705-015-9683-810.1007/s10705-015-9683-8 Search in Google Scholar

Schlesinger, W., Bernhardt, E. (eds), 2013. Biogeochemistry: an analysis of global change. Third edition. San Diego, Calif, USA: Academic Press. 672 p. Search in Google Scholar

Schneider, M.K., Luscher, A., Richter, M., Aeschlimann, U., Hartwig, U.A., Blum, H., Frossard, E., Nösberger, J., 2004. Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Global Change Biology, 10: 1377–1388. https://doi.org/10.1111/j.1365-2486.2004.00803.x10.1111/j.1365-2486.2004.00803.x Search in Google Scholar

Slmek, M., Cooper, J.E., 2002. The influence of soil pH on denitrification: progress towards the understanding of this interactions over the last 50 years. European Journal of Soil Science, 53 (3): 345–354. https://doi.org/10.1046/j.1365-2389.2002.00461.x10.1046/j.1365-2389.2002.00461.x Search in Google Scholar

Terrer, C., Vicca, S., Hungate, B.A., Phillips, R.P., Prentice, I.C., 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353 (6294): 72–74.10.1126/science.aaf461027365447 Search in Google Scholar

Zak, D.R., Holmes, W.E., White, D.C., Peacock, A.D., Tilman, D., 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology, 84: 2042–2050. https://doi.org/10.1890/02-043310.1890/02-0433 Search in Google Scholar

Zak, D.R., Pregitzer, K., Curtis, P., Holmes, W.W., 2000. Atmospheric CO2 and the composition and function of soil microbial communities. Ecological Applications, 10: 47–59. https://doi.org/10.1890/1051-0761(2000)010[0047:ACATCA]2.0.CO;2 Search in Google Scholar

Zhao, W., Zhang, J., Müller, C., Cai, Z., 2017. Effects of pH and mineralization on nitrification in a subtropical acid forest soil. Soil Research, 56 (3): 275–283. https://doi.org/10.1071/SR1708710.1071/SR17087 Search in Google Scholar

Van Ginkel, J.H., Gorissen, A., 1998. In situ decomposition of grass roots as affected by elevated atmospheric carbon dioxide. Soil Science Society of America Journal, 62: 951–958. https://doi.org/10.2136/sssaj1998.03615995006200040015x10.2136/sssaj1998.03615995006200040015x Search in Google Scholar

Vasseur, L., Potvin, C., 1998. Natural pasture community response to enriched carbon dioxide atmosphere. Plant Ecology, 135: 31–41. https://doi.org/10.1023/A:100975340324610.1023/A:1009753403246 Search in Google Scholar

Volder, A., Gifford, R., Evans, J., 2015. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass. AoB Plants, 13: plv094, 1–15. https://doi.org/10.1093/aobpla/plv09410.1093/aobpla/plv094459174526272874 Search in Google Scholar

Wang, C., Sun, Y., Chen, H., Ruan, H., 2021. Effects of elevated CO2 on the C:N stoichiometry of plants, soils, and microorganisms in terrestrial ecosystems. Catena, 201: 105219. https://doi.org/10.1016/j.catena.2021.10521910.1016/j.catena.2021.105219 Search in Google Scholar

Waring, R., Landsberg, J., Williams, M., 1998. Net primary production of forests: a constant fraction of gross primary production? Tree Physiology, 18: 129–134. https://doi.org/10.1093/treephys/18.2.12910.1093/treephys/18.2.12912651397 Search in Google Scholar

Yuan, Z.Y., Chen, H.Y., 2015. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 5 (5): 465–9. https://doi.org/10.1038/nclimate254910.1038/nclimate2549 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo