Otwarty dostęp

The parp-1 and bax genes as potential targets for treatment of the heart functioning impairments induced by type 1 diabetes mellitus


Zacytuj

Abraham TM, Pencina KM, Pencina MJ, Fox CS. Trends in diabetes incidence: the Framingham heart study. Diab Care 38, 482–487, 2015.10.2337/dc14-1432 Search in Google Scholar

Addai D, Zarkos J, Tolekova A. The bone hormones and their potential effects on glucose and energy metabolism. 53, 268–273, 2019.10.2478/enr-2019-0027 Search in Google Scholar

Aikin R, Rosenberg L, Paraskevas S, Maysinger D. Inhibition of caspase-mediated PARP-1 cleavage results in increased necrosis in isolated islets of Langerhans. J Mol Med (Berl) 82, 389–397, 2004.10.1007/s00109-004-0540-5 Search in Google Scholar

Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol 229, 232–241, 2012.10.1002/path.4113 Search in Google Scholar

Benjamin ML, Thomas MM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 6, 1246–1258, 2015.10.4239/wjd.v6.i13.1246 Search in Google Scholar

Bergmeyer H. Methods of Enzymatic Analysis. Verlag Chemie, New York, London, 1974. Search in Google Scholar

Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun. 460, 53–71, 2015.10.1016/j.bbrc.2015.01.008 Search in Google Scholar

Berridge MJ. Vitamin D and depression: cellular and regulatory mechanisms. Pharmacol Rev 69, 80–92, 2017.10.1124/pr.116.013227 Search in Google Scholar

Blenn C, Wyrsch P, Bader J, Bollhalder M, Althaus FR. Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death. Cell Mol Life Sci 68, 1455–1466, 2011.10.1007/s00018-010-0533-1 Search in Google Scholar

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254, 1976.10.1016/0003-2697(76)90527-3 Search in Google Scholar

Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96, 365–408, 2016.10.1152/physrev.00014.2015483949326681795 Search in Google Scholar

Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome - a key determinant of cancer cell biology. Nat Rev Cancer 12, 741–752, 2012.10.1038/nrc3340 Search in Google Scholar

van Diepen JA, Thiem K, Stienstra R, Riksen NP, Tack CJ, Netea MG. Diabetes propels the risk for cardiovascular disease: sweet monocytes becoming aggressive. Cell Mol Life Sci 73, 4675–4684, 2016.10.1007/s00018-016-2316-9 Search in Google Scholar

Dillmann WH. Diabetic Cardiomyopathy. Circ Res 124, 1160–1162, 2019.10.1161/CIRCRESAHA.118.314665 Search in Google Scholar

DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet 391, 2449–2462, 2018.10.1016/S0140-6736(18)31320-5 Search in Google Scholar

Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, Szabo C, and Clark RSB. Intra-mitrochondrial poly (ADP-ribosylation) contributes to NAD depletion and cell death induced by oxidative stress. J Biol Chem 278, 18426–18433, 2003.10.1074/jbc.M30129520012626504 Search in Google Scholar

Gaksch M, Jorde R, Grimnes G, Joakimsen R, Schirmer H, Wilsgaard T, Mathiesen EB, Njolstad I, Lochen ML, Marz W et al. Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS One 12, e0170791, 2017.10.1371/journal.pone.0170791531292628207791 Search in Google Scholar

Giwa AM, Ahmed R, Omidian Z, Majety N, Karakus KE, Omer SM, Donner T, Hamad ARA. Current understandings of the pathogenesis of type 1 diabetes: Genetics to environment. World J Diabetes 11, 13–25, 2020.10.4239/wjd.v11.i1.13692781931938470 Search in Google Scholar

Guzyk MM, Tykhomyrov AA, Nedzvetsky VS, Prischepa IV, Grinenko TV, Kuchmerovska TM. Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors reduce reactive gliosis and improve angiostatin levels in retina of diabetic rats. Neurochem Res 41, 2526–2537, 2016.10.1007/s11064-016-1964-327255598 Search in Google Scholar

Guzyk MM, Dyakun KO, Yanytska LV, Pryvrotska I B, Krynytska IY, Pishel IM, Kuchmerovska TM. Inhibitors of poly(ADP-Ribose)polymerase-1 as agents providing correction of brain dysfunctions induced by experimental diabetes. Neurophysiology 49, 183–193, 2017.10.1007/s11062-017-9672-4 Search in Google Scholar

Guzyk MM, Tykhonenko TM, Dyakun KO, Yanitska LV, Pryvrotska IB, Kuchmerovska TM. Altered sirtuins 1 and 2 expression in the brain of rats induced by experimental diabetes and the ways of its correction. Ukr Biochem J 91, 21–29, 2019.10.15407/ubj91.01.021 Search in Google Scholar

Heid CA, Stevens J, Livak KJ, PM Williams PM. Real time quantitative pcr. Genome Research 6, 986–994, 1996.10.1101/gr.6.10.9868908518 Search in Google Scholar

Homburg S, Visochek L, Moran N, Dantzer F, Priel E, Asculai E, Schwartz D, Rotter V, Dekel N, Cohen-Armon M. A fast signal induced activation of poly (ADP) ribose polymerase: a novel downstream target of phospholipase-C. J Cell Biol 150, 293–307, 2000.10.1083/jcb.150.2.293218022710908573 Search in Google Scholar

Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways. Endocr Rev 31, 194–223, 2010.10.1210/er.2009-0026285220920007326 Search in Google Scholar

Kasatkina LA, Tarasenko AS, Krupko OO, Kuchmerovska TM, Lisakovska OO, Trikash IO. Vitamin D deficiency induces the excitation/inhibition brain imbalance and the proinflammatory shift. Int J Biochem Cell Biol 119, 105665, 2020.10.1016/j.biocel.2019.10566531821883 Search in Google Scholar

Katsyuba E, Auwerx J. Modulating NAD (+) metabolism, from bench to bedside. EMBO J 36, 2670–2683, 2017.10.15252/embj.201797135559980128784597 Search in Google Scholar

Kraus WL, Hottiger MO. PARP-1 and gene regulation: Progress and puzzles. Molecular Aspects of Medicine 34, 1109–1123, 2013.10.1016/j.mam.2013.01.00523357755 Search in Google Scholar

Labudzynskyi DO, Manoylov KU, Shymanskyy IO, Veliky MM. Immunoregulatory effects of vitamin D3 in experimentally induced type 1 diabetes. Cytol Genet 50, 231–240, 2016.10.3103/S0095452716040071 Search in Google Scholar

Lee CF, Chavez JD, Garcia-Menendez L, Choi Y, Roe ND, Chiao YA, Edgar JS, Goo YA, Goodlett DR et al. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure. Circulation 134, 883–894, 2016.10.1161/CIRCULATIONAHA.116.022495519313327489254 Search in Google Scholar

Li W, Zhao W, Wu Q, Lu Y, Shi J, Chen X. Puerarin improves diabetic aorta injury by inhibiting NADPH oxidase-derived oxidative stress in STZ-induced diabetic rats. J Diabetes Res 2016, 8541520, 2016.10.1155/2016/8541520473680926881260 Search in Google Scholar

Lorenzo-Almoros A, Tunon J, Orejas M, Cortes M, Egido J, Lorenzo O. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc Diabetol 16, 28, 2017.10.1186/s12933-017-0506-x532426228231848 Search in Google Scholar

Mandavia CH, Aroor AR, Demarco VG, Sowers JR. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci 92, 601–608, 2013.10.1016/j.lfs.2012.10.028359413523147391 Search in Google Scholar

Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18, 149–66, 2013.10.1007/s10741-012-9313-3359300922453289 Search in Google Scholar

Nakajima H, Kubo T, Ihara H, Hikida T, Danjo T, Nakatsuji M, Shahani N, Itakura M, Ono Y, Azuma YT, Inui T, Kamiya A, Sawa A, Takeuchi T. Nuclear-translocated glyceraldehyde-3-phosphate dehydrogenase promotes poly(ADP-ribose) polymerase-1 activation during oxidative/nitrosative stress in stroke. J Biol Chem 290, 14493–14503, 2015.10.1074/jbc.M114.635607450551725882840 Search in Google Scholar

Nakaoka K, Yamada A, Noda S, Goseki-Sone M. Vitamin D-restricted high-fat diet down-regulates expression of intestinal alkaline phosphatase isozymes in ovariectomized rats. Nutr Res 53, 23–31, 2018.10.1016/j.nutres.2018.03.00129804586 Search in Google Scholar

Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci 26, 34, 2019.10.1186/s12929-019-0527-8651166231078136 Search in Google Scholar

Pallayova M, Breznoscakova D. The altered circadian pattern of basal insulin requirements – an early marker of autoimmune polyendocrine syndromes in type 1 diabetes mellitus. Endocr Regul 54, 126–132, 2020.10.2478/enr-2020-001532597157 Search in Google Scholar

Pike JW, Meyer MB, Lee SM, Onal M, Benkusky NA. The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights J Clin Invest 127, 1146–1154, 2017.10.1172/JCI88887537385328240603 Search in Google Scholar

Pillai JB, Russell HM, Raman J, Jeevanandam V, Gupta MP. Increased expression of poly(ADP-ribose) polymerase-1 contributes to caspase-independent myocyte cell death during heart failure. Am J Physiol Heart Circ Physiol 288, 486–496, 2005.10.1152/ajpheart.00437.200415374823 Search in Google Scholar

Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, Genuth S, Grimm RH, Corson MA, Prineas R; Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 33, 1578–1584, 2010.10.2337/dc10-0125289036220215456 Search in Google Scholar

Rodriguez MI, Gonzalez-Flores A, Dantzer F, Collard J, Herreros AG, Oliver FJ. Poly(ADP-ribose)-dependent regulation of Snail1 protein stability. Oncogene 30, 4365–4372, 2011.10.1038/onc.2011.15321577210 Search in Google Scholar

Sarwar N, Gao P, Kondapally Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215–22, 2010.10.1016/S0140-6736(10)60484-9 Search in Google Scholar

Schumann G, Klauke R, Canalias F, Bossert-Reuther S, Franck PFH, Gella FJ, Jorgensen PJ, Kang D, Lessinger JM, Panteghini M, Ceriotti F. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C. Part 9: reference procedure for the measurement of catalytic concentration of alkaline phosphatase. Clin Chem Lab Med 49, 1439–1446, 2011.10.1515/CCLM.2011.62121702699 Search in Google Scholar

Seibel MJ. Biochemical Markers of bone turnover Part I: Biochemical and variability. Clin Biochem Rev 26, 97–122, 2005.10.1007/978-1-59745-459-9_5 Search in Google Scholar

Garcia Soriano F, Virag L, Jagtap P, Szabo E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabo C. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 7, 108–113, 2001.10.1038/8324111135624 Search in Google Scholar

Taimeh Z, Loughran J, Birks EJ, Bolli R. Vascular endothelial growth factor in heart failure. Nat Rev Cardiol 10, 519–530, 2013.10.1038/nrcardio.2013.9423856679 Search in Google Scholar

Tziakas DN, Chalikias GK, Kaski JC. Epidemiology of the diabetic heart. Coron Artery Dis 16 Suppl 1, S3–S10, 2005.10.1097/00019501-200511001-0000216340402 Search in Google Scholar

Varga ZV, Giricz Z, Liaudet L, Hasko G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852, 232–242, 2015.10.1016/j.bbadis.2014.06.030427789624997452 Search in Google Scholar

Vincent AM, Perrone L, Sullivan KA, Backus C, Sastry AM, Lastoskie C, Feldman EL. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148, 548–558, 2007.10.1210/en.2006-007317095586 Search in Google Scholar

Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 26, 1553–1579, 2003.10.2337/diacare.26.5.155312716821 Search in Google Scholar

eISSN:
1336-0329
Język:
Angielski