Otwarty dostęp

Environmental Landscape Art Design Based on Visual Neural Network Model in Rural Construction


Zacytuj

Wu CH, Tsai SB, Liu W, Shao XF, Xia YK, Wacławek M. Green environment and sustainable development: methods and applications. Ecol Chem Eng S. 2021;28(4):467-70. DOI: 10.2478/eces-2021-0030. Search in Google Scholar

Liu W, Tsai SB, Wu CH, Shao X, Wacławek M. Corporate environmental management and sustainable operation: theory and application. Ecol Chem Eng S. 2022;29(3):283-5. DOI: 10.2478/eces-2022-0020. Search in Google Scholar

Domon G. Landscape as resource: Consequences, challenges and opportunities for rural development. Landscape Urban Planning. 2011;100(4):338-40. DOI: 10.1016/j.landurbplan.2011.02.014. Search in Google Scholar

Lafortezza R, Brown RD. A framework for landscape ecological design of new patches in the rural landscape. Environ Manage. 2004; 34:461-73. DOI: 10.1007/s00267-002-2009-z. Search in Google Scholar

Peng L. Intelligent landscape design and land planning based on neural network and wireless sensor network. J Intelligent Fuzzy Systems. 2021;40(2):2055-67. DOI: 10.3233/jifs-189207. Search in Google Scholar

Creswell A, White T, Dumoulin V. Generative adversarial networks: an overview. IEEE Signal Processing Magazine. 2018;35(1):53-65. DOI: 10.1109/MSP.2017.2765202. Search in Google Scholar

Goodfellow I, Pouget-Abadie J, Mirza M. Generative adversarial nets. Advances in Neural Information Processing Systems. 2014;2672-80. DOI: 10.1007/978-3-658-40442-0_9. Search in Google Scholar

Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. IEEE/CVF Conf Computer Vision Pattern Recognition. 2019;4401-10. DOI: 10.1109/cvpr.2019.00453. Search in Google Scholar

Park T, Liu MY, Wang TC. Semantic image synthesis with spatially-adaptive normalization. IEEE/CVF Conf Computer Vision Pattern Recognition. 2019;2337-46. DOI: 10.1109/cvpr.2019.00244. Search in Google Scholar

Sauer A, Schwarz K, Geiger A. Stylegan-xl:scaling stylegan to large diverse datasets. ACM SIGGRAPH 2022. Conf Proc. 2022;1-10. DOI: 10.1145/3528233.3530738. Search in Google Scholar

Huang GB, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Systems, Man, Cybernetics, Part B (Cybernetics). 2004;34(6):2284-92. DOI: 10.1109/TSMCB.2004.834428. Search in Google Scholar

Zhang H, Xu T, Li HS, Zhang ST, Wang XG, Huang XL, et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks. IEEE/CVF Int Conf Computer Vision. 2017;5908-16. DOI: 10.1109/ICCV.2017.629. Search in Google Scholar

Xu T, Zhang PC, Huang QY, Zhang H, Gan Z, Huang XL, et al. AttnGAN: Fine-grained text to image generation with attentional generative adversarial networks. IEEE/CVF Conf Computer Vision Pattern Recognition. 2018;1316-24. DOI: 10.1109/CVPR.2018.00143. Search in Google Scholar

Zhu MF, Pan PB, Chen W, Yang Y. DM-GAN: Dynamic memory generative adversarial networks for text-to-image synthesis. IEEE/CVF Conf Computer Vision Pattern Recognition. 2019;5795-803. DOI: 10.1109/CVPR.2019.00595. Search in Google Scholar

Xu Q, Guan X, Cao J, Ma Y, Wu H. MPR-GAN: A novel neural rendering framework for MLS point cloud with deep generative learning. IEEE Trans Geosci Remote Sensing. 2022;60(5704916):1-16. DOI: 10.1109/TGRS.2022.3212389. Search in Google Scholar

eISSN:
2084-4549
Język:
Angielski