Accès libre

Environmental Landscape Art Design Based on Visual Neural Network Model in Rural Construction

À propos de cet article

Citez

Wu CH, Tsai SB, Liu W, Shao XF, Xia YK, Wacławek M. Green environment and sustainable development: methods and applications. Ecol Chem Eng S. 2021;28(4):467-70. DOI: 10.2478/eces-2021-0030. Search in Google Scholar

Liu W, Tsai SB, Wu CH, Shao X, Wacławek M. Corporate environmental management and sustainable operation: theory and application. Ecol Chem Eng S. 2022;29(3):283-5. DOI: 10.2478/eces-2022-0020. Search in Google Scholar

Domon G. Landscape as resource: Consequences, challenges and opportunities for rural development. Landscape Urban Planning. 2011;100(4):338-40. DOI: 10.1016/j.landurbplan.2011.02.014. Search in Google Scholar

Lafortezza R, Brown RD. A framework for landscape ecological design of new patches in the rural landscape. Environ Manage. 2004; 34:461-73. DOI: 10.1007/s00267-002-2009-z. Search in Google Scholar

Peng L. Intelligent landscape design and land planning based on neural network and wireless sensor network. J Intelligent Fuzzy Systems. 2021;40(2):2055-67. DOI: 10.3233/jifs-189207. Search in Google Scholar

Creswell A, White T, Dumoulin V. Generative adversarial networks: an overview. IEEE Signal Processing Magazine. 2018;35(1):53-65. DOI: 10.1109/MSP.2017.2765202. Search in Google Scholar

Goodfellow I, Pouget-Abadie J, Mirza M. Generative adversarial nets. Advances in Neural Information Processing Systems. 2014;2672-80. DOI: 10.1007/978-3-658-40442-0_9. Search in Google Scholar

Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. IEEE/CVF Conf Computer Vision Pattern Recognition. 2019;4401-10. DOI: 10.1109/cvpr.2019.00453. Search in Google Scholar

Park T, Liu MY, Wang TC. Semantic image synthesis with spatially-adaptive normalization. IEEE/CVF Conf Computer Vision Pattern Recognition. 2019;2337-46. DOI: 10.1109/cvpr.2019.00244. Search in Google Scholar

Sauer A, Schwarz K, Geiger A. Stylegan-xl:scaling stylegan to large diverse datasets. ACM SIGGRAPH 2022. Conf Proc. 2022;1-10. DOI: 10.1145/3528233.3530738. Search in Google Scholar

Huang GB, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Systems, Man, Cybernetics, Part B (Cybernetics). 2004;34(6):2284-92. DOI: 10.1109/TSMCB.2004.834428. Search in Google Scholar

Zhang H, Xu T, Li HS, Zhang ST, Wang XG, Huang XL, et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks. IEEE/CVF Int Conf Computer Vision. 2017;5908-16. DOI: 10.1109/ICCV.2017.629. Search in Google Scholar

Xu T, Zhang PC, Huang QY, Zhang H, Gan Z, Huang XL, et al. AttnGAN: Fine-grained text to image generation with attentional generative adversarial networks. IEEE/CVF Conf Computer Vision Pattern Recognition. 2018;1316-24. DOI: 10.1109/CVPR.2018.00143. Search in Google Scholar

Zhu MF, Pan PB, Chen W, Yang Y. DM-GAN: Dynamic memory generative adversarial networks for text-to-image synthesis. IEEE/CVF Conf Computer Vision Pattern Recognition. 2019;5795-803. DOI: 10.1109/CVPR.2019.00595. Search in Google Scholar

Xu Q, Guan X, Cao J, Ma Y, Wu H. MPR-GAN: A novel neural rendering framework for MLS point cloud with deep generative learning. IEEE Trans Geosci Remote Sensing. 2022;60(5704916):1-16. DOI: 10.1109/TGRS.2022.3212389. Search in Google Scholar

eISSN:
2084-4549
Langue:
Anglais