Zacytuj

Nguyen NHA, Padil VVT, Slaveykova VI, Černík M, Ševců A. Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas reinhardtii. Nanoscale Res Lett. 2018;13:1-13. DOI: 10.1186/s11671-018-2575-5. Open DOISearch in Google Scholar

Soltys L, Olkhovyy O, Tatarchuk T, Naushad M. Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials. Magnetochemistry. 2021;7. DOI: 10.3390/magnetochemistry7110145. Open DOISearch in Google Scholar

Bharathi D, Diviya Josebin M, Vasantharaj S, Bhuvaneshwari V. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J Nanostructure Chem. 2018;8:83-92. DOI: 10.1007/s40097-018-0256-7. Open DOISearch in Google Scholar

Rout Y. Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J Microbiol Antimicrob. 2012;4:788-91. DOI: 10.5897/JMA11.060. Open DOISearch in Google Scholar

Huq MA, Ashrafudoulla M, Rahman MM, Balusamy SR, Akter S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers. 2022;14:1-22. DOI: 10.3390/polym14040742. Open DOISearch in Google Scholar

Lee SH, Jun BH. Silver nanoparticles: Synthesis and application for nanomedicine. Int J Mol Sci. 2019;20. DOI: 10.3390/ijms20040865. Open DOISearch in Google Scholar

Murali Krishna I, Bhagavanth Reddy G, Veerabhadram G, Madhusudhan A. Eco-friendly green synthesis of silver nanoparticles using Salmalia malabarica: Synthesis, characterisation, antimicrobial, and catalytic activity studies. Appl Nanosci. 2016;6:681-9. DOI: 10.1007/s13204-015-0479-6. Open DOISearch in Google Scholar

Sudha A, Jeyakanthan J, Srinivasan P. Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient Technol. 2017;3:63-74. DOI: 10.1016/j.reffit.2017.07.002. Open DOISearch in Google Scholar

Arun G, Eyini M, Gunasekaran P. Green synthesis of silver nanoparticles using the mushroom Fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng. 2014;19:1083-90. DOI: 10.1007/s12257-014-0071-z. Open DOISearch in Google Scholar

Varma RS. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014;16:2027-41. DOI: 10.1039/c3gc42640h. Open DOISearch in Google Scholar

Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem. 2019;12:3576-600. DOI: 10.1016/j.arabjc.2015.11.002. Open DOISearch in Google Scholar

Hudlikar M, Joglekar S, Dhaygude M, Kodam K. Latex-mediated synthesis of ZnS nanoparticles: Green synthesis approach. J Nanoparticle Res. 2012;14:1-6. DOI: 10.1007/s11051-012-0865-x. Open DOISearch in Google Scholar

Zare EN, Padil VVT, Mokhtari B, Venkateshaiah A, Wacławek S, Černík M, et al. Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Adv Colloid Interface Sci. 2020;283:1-17. DOI: 10.1016/j.cis.2020.102236. Open DOISearch in Google Scholar

Hebbalalu D, Lalley J, Nadagouda MN, Varma RS. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng. 2013;1:703-12. DOI: 10.1021/sc4000362. Open DOISearch in Google Scholar

Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016;7:17-28. DOI: 10.1016/j.jare.2015.02.007. Open DOISearch in Google Scholar

Akhtar N, Ihsan-ul-Haq MirzaB. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab J Chem. 2018;11:1223-35. DOI: 10.1016/j.arabjc.2015.01.013. Open DOISearch in Google Scholar

Mohammadinejad R, Karimi S, Iravani S, Varma RS. Plant-derived nanostructures: Types and applications. Green Chem. 2015;18:20-52. DOI: 10.1039/c5gc01403d. Open DOISearch in Google Scholar

Kumar H, Bhardwaj K, Dhanjal DS, Nepovimova E, Șen F, Regassa H, et al. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in pomology applications. Int J Mol Sci. 2020;21:1-18. DOI: 10.3390/ijms21228458. Open DOISearch in Google Scholar

Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol. 2018;16:1-28. DOI: 10.1186/s12951-018-0334-5. Open DOISearch in Google Scholar

Alagesan V, Venugopal S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience. 2019;9:105-16. DOI: 10.1007/s12668-018-0566-8. Open DOISearch in Google Scholar

Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ. A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. Int J Environ Res Public Health. 2022;19. DOI: 10.3390/ijerph19020674. Open DOISearch in Google Scholar

Hassan W, Zainab Kazmi SN. Antimicrobial activity of Cinnamomum tamala leaves. J Nutr Disord Ther. 2015;06:2161-0509. DOI: 10.4172/2161-0509.1000190. Open DOISearch in Google Scholar

Mal D, Gharde SK, Chatterjee R. Chemical constituent of Cinnamom umtamala: An important tree spices. Int J Curr Microbiol. 2018;7:648-51. DOI: 10.20546/ijcmas.2018.704.073. Open DOISearch in Google Scholar

Thakur S, Chaudhary G. Review based upon ayurvedic and traditional uses of Cinnamomum tamala (Tejpatta). Int J Pharm Sci Rev Res. 2021;68:71-8. DOI: 10.47583/ijpsrr.2021.v68i02.011. Open DOISearch in Google Scholar

Upadhyay RK. Therapeutic and pharmaceutical potential of Cinnamomum tamala. Res Rev: Pharm Pharm Sci. 2017; 6:18-28. Available from: https://www.rroij.com/. Search in Google Scholar

Chakraborty U, Das H. Antidiabetic and antioxidant activities of Cinnamomum tamala leaf extracts in STZ-treated diabetic rats. Glob J Biotechnol Biochem. 2010;5:12-8. ISSN: 2078-466X. Search in Google Scholar

Sharma G, Nautiyal AR. Cinnamomum tamala: A valuable tree from Himalayas. Int J Med Aromat Plants. 2011;1:1-4. Available from: http://www.openaccessscience.com/. Search in Google Scholar

Kumar S, Kumari R, Mishra S. Pharmacological properties and their medicinal uses of Cinnamomum: A review. J Pharm Pharmacol. 2019;71:1735-61. DOI: 10.1111/jphp.13173. Open DOISearch in Google Scholar

Ahmed A, Iqbal Choudhary M, Farooq A, Demirci B, Demirci F, Hüsnü Can Başer K. Essential oil constituents of the spice Cinnamomum tamala (Ham.) Nees and Eberm. Flavour Fragr J. 2000;15:388-90. DOI: 10.1002/1099-1026(200011/12)15:6<388::AID-FFJ928>3.0.CO;2-F. Open DOISearch in Google Scholar

Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials. 2018;11:940. DOI: 10.3390/ma11060940. Open DOISearch in Google Scholar

Kumar A, Kumar AA, Nayak AP, Mishra P, Panigrahy M, Sahoo PK, Panigrahi KCS. Carbohydrates and polyphenolics of extracts from genetically altered plant acts as catalysts for in vitro synthesis of silver nanoparticle. J Biosci. 2019;44:1-10. DOI: 10.1007/s12038-018-9826-6. Open DOISearch in Google Scholar

Weli AM, Al-Salmi S, al Hoqani H, Hossain MA. Biological and phytochemical studies of different leaves extracts of Pteropyrum scoparium. Beni-Suef Univ J. Basic Appl Sci. 2018;7:481-6. DOI: 10.1016/j.bjbas.2018.05.001. Open DOISearch in Google Scholar

Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci. 2016;6:755-66. DOI: 10.1007/s13204-015-0473-z. Open DOISearch in Google Scholar

Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chem. 2019;9:1-9. DOI: 10.1007/s40097-018-0291-4. Open DOISearch in Google Scholar

Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, de Oca-Vásquez GM, Vega-Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020;10:1-24. DOI: 10.3390/nano10091763. Open DOISearch in Google Scholar

Oluwaniyi OO, Adegoke HI, Adesuji ET, Alabi AB, Bodede SO, Labulo AH, et al. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana juss and its antimicrobial activities. Appl Nanosci. 2016;6:903-12. DOI: 10.1007/s13204-015-0505-8. Open DOISearch in Google Scholar

Verma A, Mehata MS. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J Radiat Res Appl Sci. 2016;9:109-15. DOI: 10.1016/j.jrras.2015.11.001. Open DOISearch in Google Scholar

Narath S, Koroth SK, Shankar SS, George B, Mutta V, Wacławek S, et al. Cinnamomum tamala leaf extract stabilized zinc oxide nanoparticles: A promising photocatalyst for methylene blue degradation. Nanomaterials. 2021;11:1558. DOI: 10.3390/nano11061558. Open DOISearch in Google Scholar

Verma DK, Hasan SH, Banik RM. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J Photochem Photobiol B. Biol. 2016;155:51-9. DOI: 10.1016/j.jphotobiol.2015.12.008. Open DOISearch in Google Scholar

Ziarani GM, Ashtiani ST, Mohajer F, Badiei A, Gaikwad SV, Varma RS. 2,3-dihydro-quinazolin-4(1H)-one as a fluorescent sensor for Hg ion and its docking studies in cancer treatment. Chem Didact Ecol Metrol. 2022;27(1-2):25-33. DOI: 10.2478/cdem-2022-0004. Open DOISearch in Google Scholar

Waclawek S, Fijalkowski M, Bardos P, Koci J, Scholz S, Hirsch P, et al. How can hybrid materials enable a circular economy? Ecol Chem Eng S. 2022;29(4):447-62. DOI: 10.2478/ECES-2022-0030. Open DOISearch in Google Scholar

Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016;6:399-408. DOI: 10.1007/s13204-015-0449-z. Open DOISearch in Google Scholar

Wacławek S. Do we still need a laboratory to study advanced oxidation processes? A review of the modelling of radical reactions used for water treatment. Ecol Chem Eng S. 2021;28:11-28. DOI: 10.2478/eces-2021-0002. Open DOISearch in Google Scholar

Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain Chem Eng. 2014;2:1717-23. DOI: 10.1021/sc500237k. Open DOISearch in Google Scholar

eISSN:
2084-4549
Język:
Angielski