Zacytuj

[1] B. Clerckx, R. Zhang, R. Schober, D. W. K. Ng, D. I. Kim, and H. V. Poor, “Fundamentals of Wireless Information and Power Transfer: From RF Energy Harvester Models to Signal and System Designs,” IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 4–33, Jan. 2018. https://doi.org/10.1109/JSAC.2018.287261510.1109/JSAC.2018.2872615Search in Google Scholar

[2] B. Clerckx and J. Kim, “On the Beneficial Roles of Fading and Transmit Diversity in Wireless Power Transfer with Nonlinear Energy Harvesting,” IEEE Trans. Wirel. Commun., vol. 17, no. 11, pp. 7731–7743, Nov. 2018. https://doi.org/10.1109/TWC.2018.287037710.1109/TWC.2018.2870377Search in Google Scholar

[3] M.-L. Ku, Y. Han, H.-Q. Lai, Y. Chen, and K. J. R. Liu, “Power Waveforming: Wireless Power Transfer Beyond Time Reversal,” IEEE Trans. Signal Process., vol. 64, no. 22, pp. 5819–5834, Nov. 2016. https://doi.org/10.1109/TSP.2016.260128310.1109/TSP.2016.2601283Search in Google Scholar

[4] A. S. Boaventura and N. B. Carvalho, “Maximizing DC power in energy harvesting circuits using multisine excitation,” in IEEE MTT-S International Microwave Symposium Digest, 2011, pp. 1–4. https://doi.org/10.1109/MWSYM.2011.597261210.1109/MWSYM.2011.5972612Search in Google Scholar

[5] D. Belo, R. Fernandes, A. Collado, A. Georgiadis, and N. B. Carvalho, “Boosting the Efficiency,” IEEE Microw. Mag., April, pp. 87–96, 2015.Search in Google Scholar

[6] M. R. V. Moghadam, Y. Zeng, and R. Zhang, “Waveform optimization for radio-frequency wireless power transfer,” IEEE Work. Signal Process. Adv. Wirel. Commun. SPAWC, vol. 2017-July, pp. 1–6, 2017. https://doi.org/10.1109/SPAWC.2017.822771910.1109/SPAWC.2017.8227719Search in Google Scholar

[7] B. Clerckx and E. Bayguzina, “Low-Complexity Adaptive Multisine Waveform Design for Wireless Power Transfer,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2207–2210, 2017. https://doi.org/10.1109/LAWP.2017.270694410.1109/LAWP.2017.2706944Search in Google Scholar

[8] K.-W. Kim, H.-S. Lee, and J.-W. Lee, “Waveform Design for Fair Wireless Power Transfer With Multiple Energy Harvesting Devices,” IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 34–47, Jan. 2019. https://doi.org/10.1109/JSAC.2018.287231110.1109/JSAC.2018.2872311Search in Google Scholar

[9] K. W. Choi, L. Ginting, P. A. Rosyady, A. A. Aziz, and D. I. Kim, “Wireless-Powered Sensor Networks: How to Realize,” IEEE Trans. Wirel. Commun., vol. 16, no. 1, pp. 221–234, Jan. 2017. https://doi.org/10.1109/TWC.2016.262176610.1109/TWC.2016.2621766Search in Google Scholar

[10] A. Boaventura, N. B. Carvalho, and A. Georgiadis, “Unconventional Waveform Design for Wireless Power Transfer,” in Nikoletseas S., Yang Y., Georgiadis A. (eds), Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Cham: Springer International Publishing, 2016, pp. 137–159. https://doi.org/10.1007/978-3-319-46810-5_610.1007/978-3-319-46810-5_6Search in Google Scholar

[11] F. Bolos, J. Blanco, A. Collado, and A. Georgiadis, “RF Energy Harvesting from Multi-Tone and Digitally Modulated Signals,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 6, pp. 1918–1927, Jun. 2016. https://doi.org/10.1109/TMTT.2016.256192310.1109/TMTT.2016.2561923Search in Google Scholar

[12] M. H. Ouda, P. Mitcheson, and B. Clerckx, “Optimal Operation of Multitone Waveforms in Low RF-Power Receivers,” in 2018 IEEE Wireless Power Transfer Conference (WPTC), 2018, pp. 1–4. https://doi.org/10.1109/WPT.2018.863942610.1109/WPT.2018.8639426Search in Google Scholar

[13] A. Litvinenko, J. Eidaks, and A. Aboltins, “Usage of Signals with a High PAPR Level for Efficient Wireless Power Transfer,” in 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), 2018, pp. 1–5. https://doi.org/10.1109/AIEEE.2018.859204310.1109/AIEEE.2018.8592043Search in Google Scholar

[14] A. Litvinenko, J. Eidaks, S. Tjukovs, D. Pikulins, and A. Aboltins, “Experimental Study of the Impact of Waveforms on the Efficiency of RF-to-DC Conversion Using a Classical Voltage Doubler Circuit,” in 2018 Advances in Wireless and Optical Communications (RTUWO), 2018, pp. 257–262. https://doi.org/10.1109/RTUWO.2018.858790710.1109/RTUWO.2018.8587907Search in Google Scholar

[15] Texas Instruments, “BQ25504 ultra low-power boost converter with battery management for energy harvester applications.” Datasheet, p. 39, 2014.Search in Google Scholar

[16] V. Slegeryte, D. Belova-Ploniene, A. Katkevicius, and D. Plonis, “Microwave Devices with Graphene Layers: A Review,” in Proceedings of 2019 IEEE Microwave Theory and Techniques in Wireless Communications, MTTW 2019, 2019, pp. 87–92. https://doi.org/10.1109/MTTW.2019.889724310.1109/MTTW.2019.8897243Search in Google Scholar

eISSN:
2255-9159
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other