Otwarty dostęp

Established and advanced approaches for recovery of microbial polyhydroxyalkanoate (PHA) biopolyesters from surrounding microbial biomass

   | 19 lip 2020

Zacytuj

Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, Sedrlova Z., Koller M. Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 2020; 104: 4795–4810.ObrucaSSedlacekPSlaninovaEFritzIDaffertCMeixnerKSedrlovaZ.KollerMNovel unexpected functions of PHA granulesAppl Microbiol Biotechnol20201044795481010.1007/s00253-020-10568-132303817Search in Google Scholar

Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017; 4(2): 55.KourmentzaCPlácidoJVenetsaneasNBurniol-FigolsAVarroneCGavalaHNReisMAMRecent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) productionBioengineering2017425510.3390/bioengineering4020055559047428952534Search in Google Scholar

Koller M, Maršálek L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017; 37: 24-38.KollerMMaršálekLMirandade Sousa Dias MBrauneggGProducing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable mannerNew Biotechnol201737243810.1016/j.nbt.2016.05.00127184617Search in Google Scholar

Brigham CJ, Riedel SL. The potential of polyhydroxyalkanoate production from food wastes. Appl Food Biotechnol 2018; 6(1): 7-18.BrighamCJRiedelSLThe potential of polyhydroxyalkanoate production from food wastesAppl Food Biotechnol201861718Search in Google Scholar

Moradi M, Rashedi H, Mofradnia SR, Khosravi-Darani K, Ashouri R, Yazdian F. Polyhydroxybutyrate production from natural gas in a bubble column bioreactor: simulation using COMSOL. Bioengineering 2019; 6(3): 84.MoradiMRashediHMofradniaSRKhosravi-DaraniKAshouriRYazdianFPolyhydroxybutyrate production from natural gas in a bubble column bioreactor: simulation using COMSOLBioengineering2019638410.3390/bioengineering6030084678382531527529Search in Google Scholar

Liu LY, Xie GJ, Xing DF, Liu BF, Ding J, Ren NQ. Biological conversion of methane to olyhydroxyalkanoate: Current advances, challenges, and perspectives. Env Sci Ecotechnol 2020; 100029.LiuLYXieGJXingDFLiuBFDingJRenNQBiological conversion of methane to olyhydroxyalkanoate: Current advances, challenges, and perspectivesEnv Sci Ecotechnol202010002910.1016/j.ese.2020.100029Search in Google Scholar

Troschl C, Meixner, K, Drosg B. Cyanobacterial PHA production— Review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 2017; 4(2): 26.TroschlCMeixnerKDrosgBCyanobacterial PHA production— Review of recent advances and a summary of three years’ working experience running a pilot plantBioengineering2017422610.3390/bioengineering4020026559047028952505Search in Google Scholar

Karmann S, Panke S, Zinn M. Multiple nutrient-limited growth and polyhydroxybutyrate (PHB) production of Rhodospirillum rubrum on syngas is restricted by the availability of CO as energy source. Front Bioeng Biotechnol 2019; 7: 59.KarmannSPankeSZinnMMultiple nutrient-limited growth and polyhydroxybutyrate (PHB) production of Rhodospirillum rubrum on syngas is restricted by the availability of CO as energy sourceFront Bioeng Biotechnol201975910.3389/fbioe.2019.00059645485831001525Search in Google Scholar

Yu LP, Wu FQ, Chen GQ. Next‐Generation Industrial Biotechnology‐transforming the current industrial biotechnology into competitive processes. Biotechnology J. 2019; 14(9): 1800437.YuLPWuFQChenGQNext‐Generation Industrial Biotechnology‐transforming the current industrial biotechnology into competitive processesBiotechnology J2019149180043710.1002/biot.20180043730927495Search in Google Scholar

Chen X, Yu L, Qiao G, Chen GQ. Reprogramming Halomonas for industrial production of chemicals. J Ind Microbiol Biotechnol 2018; 45(7): 545-554.ChenXYuLQiaoGChenGQReprogramming Halomonas for industrial production of chemicalsJ Ind Microbiol Biotechnol201845754555410.1007/s10295-018-2055-z29948194Search in Google Scholar

Sabapathy PC, Devaraj S, Meixner K, Anburajan P, Kathirvel P, Ravikumar Y., Zabed HM, Qi X. Recent developments in polyhydroxyalkanoates (PHAs) production in the past decade–A review. Bioresour Technol 2020; 123132.SabapathyPCDevarajSMeixnerKAnburajanPKathirvelPRavikumarY.ZabedHMQiXRecent developments in polyhydroxyalkanoates (PHAs) production in the past decade–A reviewBioresour Technol202012313210.1016/j.biortech.2020.12313232220472Search in Google Scholar

Choi j, Lee SY. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 1999; 51(1): 13-21.ChoijLeeSYFactors affecting the economics of polyhydroxyalkanoate production by bacterial fermentationAppl Microbiol Biotechnol1999511132110.1007/s002530051357Search in Google Scholar

Pérez-Rivero C, López-Gómez JP, Roy I. A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: State-of-the-art and latest developments. Biochem Eng J 2019; 150: 107283.Pérez-RiveroCLópez-GómezJPRoyIA sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: State-of-the-art and latest developmentsBiochem Eng J201915010728310.1016/j.bej.2019.107283Search in Google Scholar

Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly(I‐3‐hydroxyalkanoates) (PHA) biopolyesters from surrounding biomass. Eng Life Sci 2013; 13(6): 549-562.KollerMNiebelschützHBrauneggGStrategies for recovery and purification of poly(I‐3‐hydroxyalkanoates) (PHA) biopolyesters from surrounding biomassEng Life Sci201313654956210.1002/elsc.201300021Search in Google Scholar

Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A. PHA recovery from biomass. Biomacromolecules 2013; 14(9): 2963-2972.MadkourMHHeinrichDAlghamdiMAShabbajIISteinbüchelAPHA recovery from biomassBiomacromolecules20131492963297210.1021/bm401024423875914Search in Google Scholar

Kunasundari B, Sudesh K. Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 2011; 5(7): 620–634.KunasundariBSudeshKIsolation and recovery of microbial polyhydroxyalkanoatesExpress Polym Lett20115762063410.3144/expresspolymlett.2011.60Search in Google Scholar

Ramsay JA, Berger E, Voyer R, Chavarie C, Ramsay BA. Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnol Tech 1994; 8(8): 589-594.RamsayJABergerEVoyerRChavarieCRamsayBAExtraction of poly-3-hydroxybutyrate using chlorinated solventsBiotechnol Tech19948858959410.1007/BF00152152Search in Google Scholar

Rebocho AT, Pereira JR, Neves LA, Alves VD, Sevrin C, Grandfils C., Freitas F, Reis MAM. Preparation and characterization of films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture of Cupriavidus necator and Pseudomonas citronellolis in apple pulp waste. Bioengineering 2020; 7(2): 34.RebochoATPereiraJRNevesLAAlvesVDSevrinCGrandfilsC.FreitasFReisMAMPreparation and characterization of films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture of Cupriavidus necator and Pseudomonas citronellolis in apple pulp wasteBioengineering2020723410.3390/bioengineering7020034735616432260526Search in Google Scholar

Ojha N, Das N. Process optimization and characterization of polyhydroxyalkanoate copolymers produced by marine Pichia kudriavzevii VIT-NN02 using banana peels and chicken feather hydrolysate. Biocat Agri Biotechnol 2020; 101616.OjhaNDasNProcess optimization and characterization of polyhydroxyalkanoate copolymers produced by marine Pichia kudriavzevii VIT-NN02 using banana peels and chicken feather hydrolysateBiocat Agri Biotechnol202010161610.1016/j.bcab.2020.101616Search in Google Scholar

Braunegg G, Bona R, Koller M. Sustainable polymer production. Polym Plast Technol Eng 2004; 43(6): 1779-1793.BrauneggGBonaRKollerMSustainable polymer productionPolym Plast Technol Eng20044361779179310.1081/PPT-200040130Search in Google Scholar

Aramvash A, Moazzeni Zavareh F, Gholami Banadkuki N. Comparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necator Eng Life Sci 2018; 18(1): 20-28.AramvashAMoazzeniZavareh FGholamiBanadkuki NComparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necatorEng Life Sci2018181202810.1002/elsc.201700102699948832624857Search in Google Scholar

Koller M, Bona R, Chiellini E, Braunegg G. Extraction of short-chainlength poly-(I-hydroxyalkanoates) scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressure, Biotechnol Lett 2013; 35(7): 1023-1028.KollerMBonaRChielliniEBrauneggGExtraction of short-chainlength poly-(I-hydroxyalkanoates) scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressureBiotechnol Lett20133571023102810.1007/s10529-013-1185-723525946Search in Google Scholar

Jiang G, Johnston B, Townrow D, Radecka I, Koller M, Chaber P, Adamus G, Kowalczuk M. Biomass Extraction Using Non-Chlorinated Solvents for Biocompatibility Improvement of Polyhydroxyalkanoates. Polymers 2018; 10(7): 731.JiangGJohnstonBTownrowDRadeckaIKollerMChaberPAdamusGKowalczukMBiomass Extraction Using Non-Chlorinated Solvents for Biocompatibility Improvement of PolyhydroxyalkanoatesPolymers201810773110.3390/polym10070731640353330960656Search in Google Scholar

Riedel SL, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U, Sinskey AJ. Recovery of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) from Ralstonia eutropha cultures with non‐halogenated solvents. Biotechnol Bioeng 2013; 110(2): 461-470.RiedelSLBrighamCJBuddeCFBaderJRhaCStahlUSinskeyAJRecovery of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) from Ralstonia eutropha cultures with non‐halogenated solventsBiotechnol Bioeng2013110246147010.1002/bit.2471322903730Search in Google Scholar

Yang YH, Jeon JM, Kim JH, Seo HM, Rha C, Sinskey AJ, Brigham CJ. Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV)) from bacterial cells. Biotechnol Bioproc Eng 2015; 20(2): 291-297.YangYHJeonJMKimJHSeoHMRhaCSinskeyAJBrighamCJApplication of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV)) from bacterial cellsBiotechnol Bioproc Eng201520229129710.1007/s12257-014-0546-ySearch in Google Scholar

Samorì C, Basaglia M, Casella S, Favaro L, Galletti P, Giorgini L, Marchi D, Mazzocchetti L, Torri C, Tagliavini E. Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chem 2015; 17(2): 1047-1056.SamorìCBasagliaMCasellaSFavaroLGallettiPGiorginiLMarchiDMazzocchettiLTorriCTagliaviniEDimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomassGreen Chem20151721047105610.1039/C4GC01821DSearch in Google Scholar

Furrer PC. Medium‐chain‐length poly(R‐3‐hydroxy‐alkanoates): From biosynthesis towards medical applications, thesis (Doctoral dissertation) at Eidgenössische Technische Hochschule ETH Zürich, Nr. 17654, 2008FurrerPCMedium‐chain‐length poly(R‐3‐hydroxy‐alkanoates): From biosynthesis towards medical applicationsthesis (Doctoral dissertation) at Eidgenössische Technische Hochschule ETH Zürich, Nr176542008Search in Google Scholar

Lafferty RM, Heinzle E. (1979). U.S. Patent No. 4,140,741. Washington, DC: U.S. Patent and Trademark Office.LaffertyRMHeinzleE.1979U.S. Patent No. 4,140,741Washington, DCU.S. Patent and Trademark OfficeSearch in Google Scholar

Cerrone F, Radivojevic J, Nikodinovic-Runic J, Walsh M, Kenny ST, Babu R, O’Connor KE. Novel sodium alkyl-1, 3-disulfates, anionic biosurfactants produced from microbial polyesters. Colloid Surface B 2019; 182: 110333.CerroneFRadivojevicJNikodinovic-RunicJWalshMKennySTBabuRO’ConnorKENovel sodium alkyl-1, 3-disulfates, anionic biosurfactants produced from microbial polyestersColloid Surface B201918211033310.1016/j.colsurfb.2019.06.06231288131Search in Google Scholar

Asrar J, Paster MD, Solodar AJ, Strausser FE, Kurdikar Devdatt. L (2000) Methods of PHA extraction and recovery using non-halogenated solvents. European Patent 90,975,788AsrarJPasterMDSolodarAJStrausserFEKurdikarDevdatt. L2000Methods of PHA extraction and recovery using non-halogenated solventsEuropean Patent90975788Search in Google Scholar

Nonato R, Mantelatto P, Rossell C. Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 2001; 57(1-2): (2001) 1-5.NonatoRMantelattoPRossellCIntegrated production of biodegradable plastic, sugar and ethanolAppl Microbiol Biotechnol2001571-220011-510.1007/s00253010073211693904Search in Google Scholar

García A, Pérez D, Castro M, Urtuvia V, Castillo T, Díaz‐Barrera A, Espín G, Pena C. Production and recovery of poly‐3‐hydroxybutyrate (P(3HB)) of ultra‐high molecular weight using fed‐batch cultures of Azotobacter vinelandii OPNA strain. J Chem Technol Biotechnol 2019; 94(6): 1853-1860.GarcíaAPérezDCastroMUrtuviaVCastilloTDíaz‐BarreraAEspínGPenaCProduction and recovery of poly‐3‐hydroxybutyrate (P(3HB)) of ultra‐high molecular weight using fed‐batch cultures of Azotobacter vinelandii OPNA strainJ Chem Technol Biotechnol20199461853186010.1002/jctb.5959Search in Google Scholar

Gahlawat G, Kumar Soni S. Study on sustainable recovery and extraction of Polyhydroxyalkanoates (PHAs) produced by Cupriavidus necator using waste glycerol for medical applications. Chem Biochem Eng Q 2019; 33(1): 99-110.GahlawatGKumarSoni SStudy on sustainable recovery and extraction of Polyhydroxyalkanoates (PHAs) produced by Cupriavidus necator using waste glycerol for medical applicationsChem Biochem Eng Q20193319911010.15255/CABEQ.2018.1471Search in Google Scholar

Gahlawat G, Soni SK. Valorization of waste glycerol for the production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresour Technol 2017; 243: 492-501.GahlawatGSoniSKValorization of waste glycerol for the production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable mannerBioresour Technol201724349250110.1016/j.biortech.2017.06.13928692918Search in Google Scholar

de Souza Reis GA, Michels MH, Fajardo GL, Lamot I, de Best JH. Optimization of green extraction and purification of PHA produced by mixed microbial cultures from sludge. Water 2020; 12(4): 1185.deSouza Reis GAMichelsMHFajardoGLLamotIdeBest JHOptimization of green extraction and purification of PHA produced by mixed microbial cultures from sludgeWater2020124118510.3390/w12041185Search in Google Scholar

Reverchon E. Supercritical fluid extraction and fractionation of essential oils and related products. J Supercritical Fluids 1997; 10(1); 1-37.ReverchonESupercritical fluid extraction and fractionation of essential oils and related productsJ Supercritical Fluids199710113710.1016/S0896-8446(97)00014-4Search in Google Scholar

Hampson JW, Ashby RD. Extraction of lipid‐grown bacterial cells by supercritical fluid and organic solvent to obtain pure medium chain‐length polyhydroxyalkanoates. J Am Oil Chem Soc 1999; 76(11): 1371-1374.HampsonJWAshbyRDExtraction of lipid‐grown bacterial cells by supercritical fluid and organic solvent to obtain pure medium chain‐length polyhydroxyalkanoatesJ Am Oil Chem Soc199976111371137410.1007/s11746-999-0152-xSearch in Google Scholar

Williams JR, Clifford AA, Al-Saidi SH. Supercritical fluids and their applications in biotechnology and related areas. Mol Biotechnol 2002; 22(3): 263.WilliamsJRCliffordAAAl-SaidiSHSupercritical fluids and their applications in biotechnology and related areasMol Biotechnol200222326310.1385/MB:22:3:263Search in Google Scholar

Khosravi‐Darani K, Vasheghani‐Farahani E, Shojaosadati SA, Yamini Y. Effect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for polyR‐hydroxybutyrate) recovery. Biotechnol Progr 2004; 20(6): 1757-1765.Khosravi‐DaraniKVasheghani‐FarahaniEShojaosadatiSAYaminiYEffect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for polyR‐hydroxybutyrate) recoveryBiotechnol Progr20042061757176510.1021/bp0498037Search in Google Scholar

Hejazi P, Vasheghani‐Farahani E, Yamini Y. Supercritical fluid disruption of Ralstonia eutropha for poly(β‐hydroxybutyrate) recovery. Biotechnol Progr 2003; 19(5): 1519-1523HejaziPVasheghani‐FarahaniEYaminiYSupercritical fluid disruption of Ralstonia eutropha for poly(β‐hydroxybutyrate) recoveryBiotechnol Progr20031951519152310.1021/bp034010qSearch in Google Scholar

Rogers RD, Seddon KR. Ionic liquids-solvents of the future? Science 2003; 302 (5646): 792-793RogersRDSeddonKRIonic liquids-solvents of the future?Science2003302564679279310.1126/science.1090313Search in Google Scholar

Tang S, Baker GA, Zhao H. Ether-and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem Soc Rev 2012; 41(10): 4030-4066.TangSBakerGAZhaoHEther-and alcohol-functionalized task-specific ionic liquids: attractive properties and applicationsChem Soc Rev201241104030406610.1039/c2cs15362aSearch in Google Scholar

Fujita K, Kobayashi D, Nakamura N, Ohno H. Direct dissolution of wet and saliferous marine microalgae by polar ionic liquids without heating. Enzyme Microb Tech 2013; 52(3): 199-202.FujitaKKobayashiDNakamuraNOhnoHDirect dissolution of wet and saliferous marine microalgae by polar ionic liquids without heatingEnzyme Microb Tech201352319920210.1016/j.enzmictec.2012.12.004Search in Google Scholar

Kobayashi D, Fujita K, Nakamura N, Ohno H. A simple recovery process for biodegradable plastics accumulated in cyanobacteria treated with ionic liquids. Appl Microbiol Biotechnol 2015; 99(4): 1647-1653.KobayashiDFujitaKNakamuraNOhnoHA simple recovery process for biodegradable plastics accumulated in cyanobacteria treated with ionic liquidsAppl Microbiol Biotechnol20159941647165310.1007/s00253-014-6234-1Search in Google Scholar

Holmes PA, Lim GB. Separation process. US Patent 4910145, 1990HolmesPALimGBSeparation processUS Patent 49101451990Search in Google Scholar

Kachrimanidou V, Kopsahelis N, Vlysidis A, Papanikolaou S, Kookos IK, Martínez BM, ... & Koutinas AA. Downstream separation of poly (hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food Bioprod Proc 2016; 100: 323-334.KachrimanidouVKopsahelisNVlysidisAPapanikolaouSKookosIKMartínezBM&KoutinasAADownstream separation of poly (hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery conceptFood Bioprod Proc201610032333410.1016/j.fbp.2016.08.002Search in Google Scholar

Marudkla J, Patjawit A, Chuensangjun C, Sirisansaneeyakul S. Optimization of poly (3-hydroxybutyrate) extraction from Cupriavidus necator DSM 545 using sodium dodecyl sulfate and sodium hypochlorite. Agric Natural Res 2018; 52(3): 266-273MarudklaJPatjawitAChuensangjunCSirisansaneeyakulSOptimization of poly (3-hydroxybutyrate) extraction from Cupriavidus necator DSM 545 using sodium dodecyl sulfate and sodium hypochloriteAgric Natural Res201852326627310.1016/j.anres.2018.09.009Search in Google Scholar

Berger E, Ramsay BA, Ramsay JA, Chavarie C. PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol Tech 1989; 3: 227–232.BergerERamsayBARamsayJAChavarieCPHB recovery by hypochlorite digestion of non-PHB biomassBiotechnol Tech1989322723210.1007/BF01876053Search in Google Scholar

Mahansaria R, Bhowmik S, Dhara A, Saha A, Mandal MK, Ghosh R, Mukherjee J. Production enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Halogeometricum borinquense characterization of the bioplastic and desalination of the bioreactor effluent. Process Biochem. 2020; 94: 243-257.MahansariaRBhowmikSDharaASahaAMandalMKGhoshRMukherjeeJProduction enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Halogeometricum borinquense characterization of the bioplastic and desalination of the bioreactor effluentProcess Biochem20209424325710.1016/j.procbio.2020.04.004Search in Google Scholar

Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME. Bioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour Technol 2019; 282: 361-369.ManninaGPrestiDMontiel-JarilloGSuárez-OjedaMEBioplastic recovery from wastewater: a new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial culturesBioresour Technol201928236136910.1016/j.biortech.2019.03.03730884455Search in Google Scholar

Koller M. Polyhydroxyalkanoate biosynthesis at the edge of water activitiy-haloarchaea as biopolyester factories. Bioengineering 2019; 6(2): 34.KollerMPolyhydroxyalkanoate biosynthesis at the edge of water activitiy-haloarchaea as biopolyester factoriesBioengineering2019623410.3390/bioengineering6020034663127730995811Search in Google Scholar

Rodríguez-Valera F, Lillo JG. Halobacteria as producers of poly-ß-hydroxyalkanoates. In: Dawes EA (Ed.) Novel Biodegradable Microbial Polymers, NATO ASI Series (Series E: Applied Sciences), vol 186, Springer, Dordrecht, The Netherlands, pp. 425-426.Rodríguez-ValeraFLilloJGHalobacteria as producers of poly-ß-hydroxyalkanoatesInDawesEAEdNovel Biodegradable Microbial Polymers, NATO ASI Series (Series E: Applied Sciences), vol 186SpringerDordrecht, The Netherlandspp42542610.1007/978-94-009-2129-0_35Search in Google Scholar

Bhattacharyya A, Pramanik A, Maji SK, Haldar S, Mukhopadhyay UK, Mukherjee J. Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei AMB express 2012; 2(1): 34.BhattacharyyaAPramanikAMajiSKHaldarSMukhopadhyayUKMukherjeeJUtilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterraneiAMB express2012213410.1186/2191-0855-2-34350768722776040Search in Google Scholar

Alsafadi D, Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei New Biotechnol 2017; 34: 47-53.AlsafadiDAl-MashaqbehOA one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterraneiNew Biotechnol201734475310.1016/j.nbt.2016.05.00327224675Search in Google Scholar

Hezayen FF, Rehm BHA, Eberhardt R, Steinbüchel A. Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 2000; 54(3): 319-325.HezayenFFRehmBHAEberhardtRSteinbüchelAPolymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactorAppl Microbiol Biotechnol200054331932510.1007/s00253000039411030566Search in Google Scholar

Salgaonkar BB, Bragança JM. Utilization of sugarcane bagasse by Halogeometricum borinquense strain E3 for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioengineering 2017; 4(2): 50.SalgaonkarBBBragançaJMUtilization of sugarcane bagasse by Halogeometricum borinquense strain E3 for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Bioengineering2017425010.3390/bioengineering4020050Search in Google Scholar

Chee JY, Lakshmanan M, Jeepery IF, Hairudin NHM, Sudesh K. The potential application of Cupriavidus necator as polyhydroxyalkanoates producer and single cell protein: a review on scientific, cultural and religious perspectives. Appl Food Biotechnol 2019; 6(1): 19-34.CheeJYLakshmananMJeeperyIFHairudinNHMSudeshKThe potential application of Cupriavidus necator as polyhydroxyalkanoates producer and single cell protein: a review on scientific, cultural and religious perspectivesAppl Food Biotechnol2019611934Search in Google Scholar

Ong SY, Zainab-L I, Pyary S, Sudesh K. A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 2018; 122(5): 2117–2127.OngSYZainab-LIPyarySSudeshKA novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animalsAppl Microbiol Biotechnol201812252117212710.1007/s00253-018-8788-9Search in Google Scholar

Murugan P, Han L, Gan CY, Maurer FH, Sudesh K. A new biological recovery approach for PHA using mealworm, Tenebrio molitor J Biotechnol 2016; 239: 98-105.MuruganPHanLGanCYMaurerFHSudeshKA new biological recovery approach for PHA using mealworm, Tenebrio molitorJ Biotechnol20162399810510.1016/j.jbiotec.2016.10.012Search in Google Scholar

Kunasundari B, Murugaiyah V, Kaur G, Maurer FH, Sudesh K. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PloS One 2013; 8(10): e78528.KunasundariBMurugaiyahVKaurGMaurerFHSudeshKRevisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneouslyPloS One2013810e7852810.1371/journal.pone.0078528Search in Google Scholar

Rodríguez Gamero JE, Favaro L, Pizzocchero V, Lomolino G, Basaglia M, Casella S. Nuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processing. Bioresour Technol 261 (2018) 176-181.RodríguezGamero JEFavaroLPizzoccheroVLomolinoGBasagliaMCasellaSNuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processingBioresour Technol261201817618110.1016/j.biortech.2018.04.021Search in Google Scholar

Choi JI, Lee SY. Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol Bioeng 62; 2000: 546-553.ChoiJILeeSYEfficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicalsBiotechnol Bioeng62200054655310.1002/(SICI)1097-0290(19990305)62:5<546::AID-BIT6>3.0.CO;2-0Search in Google Scholar

Fernández-Dacosta C, Posada JA, Kleerebezem R, Cuellar MC, Ramirez A. Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresour Technol 2015; 185: 368-377.Fernández-DacostaCPosadaJAKleerebezemRCuellarMCRamirezAMicrobial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessmentBioresour Technol201518536837710.1016/j.biortech.2015.03.025Search in Google Scholar

Righi S, Baioli F, Samorì C, Galletti P, Tagliavini E, Stramigioli C, Tugnoli A, Fantke P. A life cycle assessment of poly-hydroxybutyrate extraction from microbial biomass using dimethyl carbonate. J Clean Prod 2017; 168: 692-707.RighiSBaioliFSamorìCGallettiPTagliaviniEStramigioliCTugnoliAFantkePA life cycle assessment of poly-hydroxybutyrate extraction from microbial biomass using dimethyl carbonateJ Clean Prod201716869270710.1016/j.jclepro.2017.08.227Search in Google Scholar

Metzner K, Sela M, Schaffer J. Agents for extraction polyhydroxyalkane acids. European Patent EP0848759, 1998MetznerKSelaMSchafferJAgents for extraction polyhydroxyalkane acidsEuropean Patent EP08487591998Search in Google Scholar

eISSN:
2564-615X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics