Otwarty dostęp

Correction of mitochondrial dysfunction by succinic acid derivatives under experimental cerebral ischemia conditions


Zacytuj

1. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142.10.1186/s12974-019-1516-2661768431291966Search in Google Scholar

2. Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis. 2019;10(2):429-62.10.14336/AD.2019.0119645704631011487Search in Google Scholar

3. Lallukka T, Ervasti J, Lundström E, Mittendorfer-Rutz E, Friberg E, Virtanen M, et al. Trends in diagnosis-specific work disability before and after stroke: A longitudinal population-based study in Sweden. J Am Heart Assoc. 2018;7(1):e006991.10.1161/JAHA.117.006991577896129301760Search in Google Scholar

4. Mondal NK, Behera J, Kelly KE, George AK, Tyagi PK, Tyagi N. Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochem Int. 2019;122:120-38.10.1016/j.neuint.2018.11.015666626830472160Search in Google Scholar

5. Ham PB 3rd, Raju R. Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol. 2017;157:92-116.10.1016/j.pneurobio.2016.06.006516173627321753Search in Google Scholar

6. Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018;16:263-75.10.1016/j.redox.2018.03.002585493029549824Search in Google Scholar

7. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 1985;54:1015-69.10.1146/annurev.bi.54.070185.0050552862839Search in Google Scholar

8. Liu F, Lu J, Manaenko A, Tang J, Hu Q. Mitochondria in Ischemic Stroke: New Insight and Implications. Aging Dis. 2018;9(5):924-37.10.14336/AD.2017.1126614758830271667Search in Google Scholar

9. Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. Ann NY Acad Sci. 2005;1047:248-58.10.1196/annals.1341.02216093501Search in Google Scholar

10. Nguyen H, Zarriello S, Rajani M, Tuazon J, Napoli E, Borlongan CV. Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment. Int J Mol Sci. 2018;19(7):2127.10.3390/ijms19072127607342130037107Search in Google Scholar

11. Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev. 2015;95(4):1111-55.10.1152/physrev.00001.2015460094926269524Search in Google Scholar

12. Hawkins BJ, Levin MD, Doonan PJ, Petrnko NB, Davis CW, Patel VV, et al. Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J Biol Chem. 2010;285(34):26494-505.10.1074/jbc.M110.143164292408520566649Search in Google Scholar

13. Xiao Y, Zhang Z, Wang Y, Gao B, Chang J, Zhu D. Two-Stage Crystallization Combining Direct Succinimide Synthesis for the Recovery of Succinic Acid From Fermentation Broth. Front Bioeng Biotechnol. 2020;7:471.10.3389/fbioe.2019.00471697444932010679Search in Google Scholar

14. Volchegorskii IA, Miroshnichenko IY, Rassokhina LM, Faizullin RM, Malkin MР, Pryakhina KE, et.al. Comparative analysis of the anxiolytic effects of 3-hydroxypyridine and succinic acid derivatives. Bull Exp Biol Med. 2015;158(6): 756-61.10.1007/s10517-015-2855-325894772Search in Google Scholar

15. Ferro A, Carbone E, Zhang J, Marzouk E, Villegas M, Siegel A, et al. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLoS One. 2017;12(12):e0188425.10.1371/journal.pone.0188425571851529211771Search in Google Scholar

16. Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA. 2000;97(6):2826-31.10.1073/pnas.97.6.28261601410717001Search in Google Scholar

17. Nowak G, Clifton GL, Bakajsova D. Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells. J Pharmacol Exp Ther. 2008;324(3):1155-62.10.1124/jpet.107.130872255327418055880Search in Google Scholar

18. Pozdnyakov DI, Nygaryan SA, Voronkov AV. Ethylmethylhydroxypyridine succinate, acetylcysteine and choline alphoscerate improve mitochondrial function under condition of cerebral ischemia in rat. Bangladesh Pharmacol. 2019;14(3):152-8.10.3329/bjp.v14i3.40977Search in Google Scholar

19. Tamura A, Graham DI, McCulloch J, Teasdale GM. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1(1):53-60.10.1038/jcbfm.1981.67328138Search in Google Scholar

20. Patel SP, Sullivan PG, Pandya JD, et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma. Exp Neurol. 2014;257:95-105.10.1016/j.expneurol.2014.04.026411414824805071Search in Google Scholar

21. Pozdnyakov DI, Voronkov AV, Miroshnichenko KA, Adzhiahmetova SL, Chervonnaya NM, Rukovitcina VM. Pyrimidine-4H-1OH derivatives restore mitochondrial function in experimental chronic traumatic encephalopathy. Pharmacologyonline.2019;3:36-45Search in Google Scholar

22. He F. Bradford Protein Assay. Bio-101:2015.e45.Search in Google Scholar

23. Zhyliuk V, Mamchur V, Pavlov S. Role of functional state of neuronal mitochondria of cerebral cortex in mechanisms of nootropic activity of neuroprotectors in rats with alloxan hyperglycemia. Eksperimental’naia i klinicheskaia farmakologiia. 2015;78: 10-4.Search in Google Scholar

24. Klacanova K, Kovalska M, Chomova M, et al. Global brain ischemia in rats is associated with mitochondrial release and downregulation of Mfn2 in the cerebral cortex, but not the hippocampus. Int J Mol Med. 2019;43(6):2420-8.10.3892/ijmm.2019.4168648817131017259Search in Google Scholar

25. Kumar R, Bukowski MJ, Wider JM, Reynalds CA, Calo L, Bradley L, et al. Mitochondrial dynamics following global cerebral ischemia. Mol Cell Neurosci. 2016;76:68-75.10.1016/j.mcn.2016.08.010505682927567688Search in Google Scholar

26. Rouslin W, Long I, Richard B, Broge CW. Why are ATP depletion rates in situ in ischemic myocardium so much lower than one might predict from the activity of the mitochondrial ATPase in sonicated heart mitochondria? J Mol Cell Cardiol. 1997;29:1505-10.Search in Google Scholar

27. Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J, Ausserlechner MJ. The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antiox. 2019;8(10):454.10.3390/antiox8100454682666331590423Search in Google Scholar

28. Deroche-Gamonet V, Revest JM, Fiancette JF, Balado E, Koehl M, Grosjean N, et.al. Depleting adult dentate gyrus neurogenesis increases cocaine-seeking behavior. Mol Psych. 2019;24(2): 312-20.10.1038/s41380-018-0038-029507372Search in Google Scholar

29. Оyedotun KS, Lemire BD. The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. J Biol Chem. 2004;279(10):9424-1.Search in Google Scholar

30. Sotler R, Poljšak B, Dahmane R, Jukić T, Pavan Jukić D, Rotim C, Trebše P, Starc A. Prooxidant activities of antioxidants and their impact on health. Acta Clin Croat. 2019; 58(4):726-36.10.20471/acc.2019.58.04.20731429832595258Search in Google Scholar

31. Palagina IA. Pro-/antioxidant reactions and nitrogen oxide metabolism under sub-chronic effect of succinic acid derivatives. The Ukrainian Biochemical Journal. 2017;89(4):22-33.10.15407/ubj89.04.022Search in Google Scholar

32. Hurst S, Hoek J, Sheu SS. Mitochondrial Ca2+ and regulation of the permeability transition pore. J Bioenerg Biomembr. 2017;49(1):27-47.10.1007/s10863-016-9672-x539327327497945Search in Google Scholar

33. Panneer Selvam S, Roth BM, Nganga R, Kim J, Cooley MA, Helke K, et al. Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3. J Biol Chem. 2018;293(25):9784-800.10.1074/jbc.RA118.003506601645329748384Search in Google Scholar

34. Milasta S, Dillon CP, Sturm OE, Verbist KC, Brewer TL, Quarato G, et al. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function. Immun. 2016;44(1):88-102.10.1016/j.immuni.2015.12.002493648726795252Search in Google Scholar

35. Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, et al. Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Curr Vasc Pharmacol. 2017;15(2):115-22.10.2174/157016111566616110409552227823556Search in Google Scholar

eISSN:
2300-6676
ISSN:
2084-980X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy