1. bookTom 23 (2023): Zeszyt 1 (March 2023)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1314-4081
Pierwsze wydanie
13 Mar 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Improved Barnacle Mating Optimizer-Based Least Square Support Vector Machine to Predict COVID-19 Confirmed Cases with Total Vaccination

Data publikacji: 25 Mar 2023
Tom & Zeszyt: Tom 23 (2023) - Zeszyt 1 (March 2023)
Zakres stron: 125 - 140
Otrzymano: 04 Oct 2022
Przyjęty: 10 Feb 2023
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1314-4081
Pierwsze wydanie
13 Mar 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Landi, F., et al. The New Challenge of Geriatrics: Saving Frail Older People from the SARS-COV-2 Pandemic Infection. – Journal of Nutrition, Health and Aging, Vol. 24, 2020, No 5, pp. 466-470. DOI: 10.1007/s12603-020-1356-x. Otwórz DOISearch in Google Scholar

Landi, F., et al. Post-COVID-19 Global Health Strategies: The Need for an Interdisciplinary Approach. – Aging Clinical and Experimental Research, Vol. 32, 2020, No 8, pp. 1613-1620. DOI: 10.1007/s40520-020-01616-x. Otwórz DOISearch in Google Scholar

Cheng, Z. J., J. Shan. 2019 Novel Coronavirus: Where We Are and What We Know. – Infection, Vol. 48, 2020, No 2, pp. 155-163. DOI: 10.1007/s15010-020-01401-y. Otwórz DOISearch in Google Scholar

Guan, W. J., et al. China Medical Treatment Expert Group for COVID-19. Clinical Characteristics of Coronavirus Disease 2019 in China. – N. Engl. J. Med., Vol. 382, 30 April 2020, No 18, pp. 1708-1720. DOI: 10.1056/NEJMoa2002032. Epub 2020 Feb 28. PMID: 32109013, PMCID: PMC7092819. Otwórz DOISearch in Google Scholar

Quintana, V. H., M. Santos-Nieto. Reactive-Power Dispatch by Successive Quadratic Programming. – IEEE Transactions on Energy Conversion, Vol. 4, 1989, No 3, pp. 425-435. DOI: 10.1109/60.43245. Otwórz DOISearch in Google Scholar

Aceves-Lara, C. A., et al. Kinetic Parameters Estimation in an Anaerobic Digestion Process Using Successive Quadratic Programming. – Water Science and Technology, Vol. 52, 2005, No 1-2, pp. 419-426. DOI: 10.2166/wst.2005.0548. Otwórz DOISearch in Google Scholar

Xie, Y. F. Reduced Hessian Successive Quadratic Programming Algorithm. – Large-Scale Optimization with Applications, Part I: Optimization in Inverse Problems and Design, Vol. 92, p. 195. Search in Google Scholar

Wan, C., J. Wang, J. Lin, Y. Song, Z. Y. Dong. Nonparametric Prediction Intervals of Wind Power via Linear Programming. – IEEE Transactions on Power Systems, Vol. 33, 2018, No 1, pp. 1074-1076. DOI: 10.1109/TPWRS.2017.2716658. Otwórz DOISearch in Google Scholar

Lee, E. K., T. L. Wu. Classification and Disease Prediction via Mathematical Programming. – Data Mining, Systems Analysis and Optimization in Biomedicine, Vol. 953. 2007. DOI: 10.1063/1.2817343. Otwórz DOISearch in Google Scholar

Cuéllar, M. P., M. Delgado, M. C. Pegalajar. An Application of Non-Linear Programming to Train Recurrent Neural Networks in Time Series Prediction Problems. – In: Proc. of 7th International Conference on Enterprise Information Systems (ICEIS’2005), 2005, No Lm, pp. 35-42. DOI: 10.1007/978-1-4020-5347-4_11. Otwórz DOISearch in Google Scholar

Mangasarian, O. L., W. N. Street, W. H. Wolberg. Breast Cancer Diagnosis and Prognosis via Linear Programming. – Operations Research, Vol. 43, 1995, No 4, pp. 570-577. DOI: 10.1287/opre.43.4.570. Otwórz DOISearch in Google Scholar

Zarrin, P., M. Maleki, Z. Khodadai, R. B. Arellano-Valle. Time Series Models Based on the Unrestricted Skew-Normal Process. – Journal of Statistical Computation and Simulation, Vol. 89, 2019, No 1, pp. 38-51. DOI: 10.1080/00949655.2018.1533962. Otwórz DOISearch in Google Scholar

Ghasami, S., M. Maleki, Z. Khodadadi. Leptokurtic and Platykurtic Class of Robust Symmetrical and Asymmetrical Time Series Models. – Journal of Computational and Applied Mathematics, Vol. 376, 2020, p. 112806. DOI: 10.1016/j.cam.2020.112806. Otwórz DOISearch in Google Scholar

Maleki, M., A. R. Nematollahi. Autoregressive Models with Mixture of Scale Mixtures of Gaussian Innovations. – Iranian Journal of Science and Technology, Transaction A: Science, Vol. 41, 2017, No 4, pp. 1099-1107. DOI: 10.1007/s40995-017-0237-6. Otwórz DOISearch in Google Scholar

Mustaffa, Z., M. H. Sulaiman. COVID-19 Confirmed Cases Prediction in China Based on Barnacles Mating Optimizer-Least Squares Support Vector Machines. – Cybernetics and Information Technologies, Vol. 21, 2021, No 4, pp. 62-76. Search in Google Scholar

Mustaffa, Z., H. Sulaiman, K. A. M. Rosli, M. F. M. Mohsin, Y. Yusof. Predictive Analysis of Dengue Outbreak Based on an Improved Salp Swarm Algorithm. – Cybernetics and Information Technologies, Vol. 20, 2020, No 4, pp. 156-169. Search in Google Scholar

Li, G., K. Chen, H. Yang. A New Hybrid Prediction Model of Cumulative COVID-19 Confirmed Data. – Process Safety and Environmental Protection, Vol. 157, 2022, pp. 1-19. DOI: 10.1016/j.psep.2021.10.047. Otwórz DOISearch in Google Scholar

Maleki, M., M. R. Mahmoudi, D. Wraith, K. H. Pho. Time Series Modelling to Forecast the Confirmed and Recovered Cases of COVID-19. – Travel Medicine and Infectious Disease, Vol. 37, 2020, No March, p. 101742. DOI: 10.1016/j.tmaid.2020.101742. Otwórz DOISearch in Google Scholar

Talkhi, N., N. Akhavan Fatemi, Z. Ataei, M. Jabbari Nooghabi. Modeling and Forecasting Number of Confirmed and Death Caused COVID-19 in IRAN: A Comparison of Time Series Forecasting Methods. – Biomedical Signal Processing and Control, Vol. 66, 2021, No November 2020, p. 102494. DOI: 10.1016/j.bspc.2021.102494. Otwórz DOISearch in Google Scholar

Chimmula, V. K. R., L. Zhang. Time Series Forecasting of COVID-19 Transmission in Canada Using LSTM Networks. – Chaos, Solitons and Fractals, Vol. 135, 2020. DOI: 10.1016/j.chaos.2020.109864. Otwórz DOISearch in Google Scholar

Zeroual, A., F. Harrou, A. Dairi, Y. Sun. Deep Learning Methods for Forecasting COVID-19 Time-Series Data: A Comparative Study. – Chaos, Solitons and Fractals, Vol. 140, 2020, p. 110121. DOI: 10.1016/j.chaos.2020.110121. Otwórz DOISearch in Google Scholar

Shastri, S., K. Singh, S. Kumar, P. Kour, V. Mansotra. Time Series Forecasting of COVID-19 Using Deep Learning Models: India-USA Comparative Case study. – Chaos, Solitons and Fractals, Vol. 140, 2020, p. 110227. DOI: 10.1016/j.chaos.2020.110227. Otwórz DOISearch in Google Scholar

Kumar, N., S. Susan. COVID-19 Pandemic Prediction Using Time Series Forecasting Models. – In: Proc. of 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT’20), 2020. DOI: 10.1109/ICCCNT49239.2020.9225319. Otwórz DOISearch in Google Scholar

Alassafi, M. O., M. Jarrah, R. Alotaibi. Time Series Predicting of COVID-19 Based on Deep Learning. – Neurocomputing, Vol. 468, 2022, pp. 335-344. DOI: 10.1016/j.neucom.2021.10.035. Otwórz DOISearch in Google Scholar

Clerc, M. Particle Swarm Optimization. – Particle Swarm Optimization, 2010, pp. 1942-1948. DOI: 10.1002/9780470612163. Otwórz DOISearch in Google Scholar

Gold, J. E., R. A. Okyay, W. E. Licht, D. J. Hurley. Investigation of Long Covid Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. – Pathogens, Vol. 10, 2021, No 6, pp. 1-15. DOI: 10.3390/pathogens10060763. Otwórz DOISearch in Google Scholar

Mirjalili, S., S. M. Mirjalili, A. Lewis. Grey Wolf Optimizer. – Advances in Engineering Software, Vol. 69, 2014, pp. 46-61. DOI: 10.1016/j.advengsoft.2013.12.007. Otwórz DOISearch in Google Scholar

Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. – Knowledge-Based Systems, Vol. 89, 2015, pp. 228-249. DOI: 10.1016/j.knosys.2015.07.006. Otwórz DOISearch in Google Scholar

COVID Live – Coronavirus Statistics – Worldometer. (Accessed 14 June 2022). https://www.worldometers.info/coronavirus/ Search in Google Scholar

Sulaiman, M. H., Z. Mustaffa, M. M. Saari, H. Daniyal. Barnacles Mating Optimizer: A New Bio-Inspired Algorithm for Solving Engineering Optimization Problems. – Engineering Applications of Artificial Intelligence, Vol. 87, 2020, pp. 265-270. DOI: 10.1016/j.engappai.2019.103330. Otwórz DOISearch in Google Scholar

Sulaiman, M. H., Z. Mustaffa, M. M. Saari, H. Daniyal, I. Musirin, M. R. Daud. Barnacles Mating Optimizer: An Evolutionary Algorithm for Solving Optimization. – In: Proc. of IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS’18), October 2018, pp. 99-104. DOI: 10.1109/I2CACIS.2018.8603703. Otwórz DOISearch in Google Scholar

Sulaiman, M. H., et al. Barnacles Mating Optimizer: A Bio-Inspired Algorithm for Solving Optimization Problems. – In: Proc. of 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD’18), Vol. 87, June 2018, No September 2019, pp. 265-270. DOI: 10.1109/SNPD.2018.8441097. Otwórz DOISearch in Google Scholar

Abdullah, J. M., T. Ahmed. Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process. – IEEE Access, Vol. 7, 2019, pp. 43473-43486. Search in Google Scholar

Price, K. V., N. H. Awad, M. Z. Ali, P. N. Suganthan. The 100-Digit Challenge: Problem de_nitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization. – School Elect. Electron. Eng., Nanyang Technol. Univ. of Singapore, Tech. Rep., November 2018. Search in Google Scholar

Mirjalili, S. Dragon_y Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems. – Neural Comput. Appl., Vol. 27, May 2015, No 4, pp. 1053-1073. Search in Google Scholar

Mirjaliliab, S., A. Lewisa. The Whale Optimization Algorithm. – Adv. Eng. Softw., Vol. 95, May 2016, pp. 51-67. Search in Google Scholar

Mirjalilia, S., A. H. Gandomibf, S. Z. Mirjalili, C. Saremia, H. Farisd, S. M. Mirjalilie. Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems. – Adv. Eng. Softw., Vol. 114, December 2017, pp. 163-191. Search in Google Scholar

Mirjalili, A., S. Mirjalili. Seyedali Mirjalili. 2015 (Accessed 01 January 2019). http://www.alimirjalili.com/Projects.html Search in Google Scholar

Polecane artykuły z Trend MD