Landi, F., et al. The New Challenge of Geriatrics: Saving Frail Older People from the SARS-COV-2 Pandemic Infection. – Journal of Nutrition, Health and Aging, Vol. 24, 2020, No 5, pp. 466-470. DOI: 10.1007/s12603-020-1356-x.Ouvrir le DOISearch in Google Scholar
Landi, F., et al. Post-COVID-19 Global Health Strategies: The Need for an Interdisciplinary Approach. – Aging Clinical and Experimental Research, Vol. 32, 2020, No 8, pp. 1613-1620. DOI: 10.1007/s40520-020-01616-x.Ouvrir le DOISearch in Google Scholar
Cheng, Z. J., J. Shan. 2019 Novel Coronavirus: Where We Are and What We Know. – Infection, Vol. 48, 2020, No 2, pp. 155-163. DOI: 10.1007/s15010-020-01401-y.Ouvrir le DOISearch in Google Scholar
Guan, W. J., et al. China Medical Treatment Expert Group for COVID-19. Clinical Characteristics of Coronavirus Disease 2019 in China. – N. Engl. J. Med., Vol. 382, 30 April 2020, No 18, pp. 1708-1720. DOI: 10.1056/NEJMoa2002032. Epub 2020 Feb 28. PMID: 32109013, PMCID: PMC7092819.Ouvrir le DOISearch in Google Scholar
Quintana, V. H., M. Santos-Nieto. Reactive-Power Dispatch by Successive Quadratic Programming. – IEEE Transactions on Energy Conversion, Vol. 4, 1989, No 3, pp. 425-435. DOI: 10.1109/60.43245.Ouvrir le DOISearch in Google Scholar
Aceves-Lara, C. A., et al. Kinetic Parameters Estimation in an Anaerobic Digestion Process Using Successive Quadratic Programming. – Water Science and Technology, Vol. 52, 2005, No 1-2, pp. 419-426. DOI: 10.2166/wst.2005.0548.Ouvrir le DOISearch in Google Scholar
Xie, Y. F. Reduced Hessian Successive Quadratic Programming Algorithm. – Large-Scale Optimization with Applications, Part I: Optimization in Inverse Problems and Design, Vol. 92, p. 195.Search in Google Scholar
Wan, C., J. Wang, J. Lin, Y. Song, Z. Y. Dong. Nonparametric Prediction Intervals of Wind Power via Linear Programming. – IEEE Transactions on Power Systems, Vol. 33, 2018, No 1, pp. 1074-1076. DOI: 10.1109/TPWRS.2017.2716658.Ouvrir le DOISearch in Google Scholar
Lee, E. K., T. L. Wu. Classification and Disease Prediction via Mathematical Programming. – Data Mining, Systems Analysis and Optimization in Biomedicine, Vol. 953. 2007. DOI: 10.1063/1.2817343.Ouvrir le DOISearch in Google Scholar
Cuéllar, M. P., M. Delgado, M. C. Pegalajar. An Application of Non-Linear Programming to Train Recurrent Neural Networks in Time Series Prediction Problems. – In: Proc. of 7th International Conference on Enterprise Information Systems (ICEIS’2005), 2005, No Lm, pp. 35-42. DOI: 10.1007/978-1-4020-5347-4_11.Ouvrir le DOISearch in Google Scholar
Mangasarian, O. L., W. N. Street, W. H. Wolberg. Breast Cancer Diagnosis and Prognosis via Linear Programming. – Operations Research, Vol. 43, 1995, No 4, pp. 570-577. DOI: 10.1287/opre.43.4.570.Ouvrir le DOISearch in Google Scholar
Zarrin, P., M. Maleki, Z. Khodadai, R. B. Arellano-Valle. Time Series Models Based on the Unrestricted Skew-Normal Process. – Journal of Statistical Computation and Simulation, Vol. 89, 2019, No 1, pp. 38-51. DOI: 10.1080/00949655.2018.1533962.Ouvrir le DOISearch in Google Scholar
Ghasami, S., M. Maleki, Z. Khodadadi. Leptokurtic and Platykurtic Class of Robust Symmetrical and Asymmetrical Time Series Models. – Journal of Computational and Applied Mathematics, Vol. 376, 2020, p. 112806. DOI: 10.1016/j.cam.2020.112806.Ouvrir le DOISearch in Google Scholar
Maleki, M., A. R. Nematollahi. Autoregressive Models with Mixture of Scale Mixtures of Gaussian Innovations. – Iranian Journal of Science and Technology, Transaction A: Science, Vol. 41, 2017, No 4, pp. 1099-1107. DOI: 10.1007/s40995-017-0237-6.Ouvrir le DOISearch in Google Scholar
Mustaffa, Z., M. H. Sulaiman. COVID-19 Confirmed Cases Prediction in China Based on Barnacles Mating Optimizer-Least Squares Support Vector Machines. – Cybernetics and Information Technologies, Vol. 21, 2021, No 4, pp. 62-76.Search in Google Scholar
Mustaffa, Z., H. Sulaiman, K. A. M. Rosli, M. F. M. Mohsin, Y. Yusof. Predictive Analysis of Dengue Outbreak Based on an Improved Salp Swarm Algorithm. – Cybernetics and Information Technologies, Vol. 20, 2020, No 4, pp. 156-169.Search in Google Scholar
Li, G., K. Chen, H. Yang. A New Hybrid Prediction Model of Cumulative COVID-19 Confirmed Data. – Process Safety and Environmental Protection, Vol. 157, 2022, pp. 1-19. DOI: 10.1016/j.psep.2021.10.047.Ouvrir le DOISearch in Google Scholar
Maleki, M., M. R. Mahmoudi, D. Wraith, K. H. Pho. Time Series Modelling to Forecast the Confirmed and Recovered Cases of COVID-19. – Travel Medicine and Infectious Disease, Vol. 37, 2020, No March, p. 101742. DOI: 10.1016/j.tmaid.2020.101742.Ouvrir le DOISearch in Google Scholar
Talkhi, N., N. Akhavan Fatemi, Z. Ataei, M. Jabbari Nooghabi. Modeling and Forecasting Number of Confirmed and Death Caused COVID-19 in IRAN: A Comparison of Time Series Forecasting Methods. – Biomedical Signal Processing and Control, Vol. 66, 2021, No November 2020, p. 102494. DOI: 10.1016/j.bspc.2021.102494.Ouvrir le DOISearch in Google Scholar
Chimmula, V. K. R., L. Zhang. Time Series Forecasting of COVID-19 Transmission in Canada Using LSTM Networks. – Chaos, Solitons and Fractals, Vol. 135, 2020. DOI: 10.1016/j.chaos.2020.109864.Ouvrir le DOISearch in Google Scholar
Zeroual, A., F. Harrou, A. Dairi, Y. Sun. Deep Learning Methods for Forecasting COVID-19 Time-Series Data: A Comparative Study. – Chaos, Solitons and Fractals, Vol. 140, 2020, p. 110121. DOI: 10.1016/j.chaos.2020.110121.Ouvrir le DOISearch in Google Scholar
Shastri, S., K. Singh, S. Kumar, P. Kour, V. Mansotra. Time Series Forecasting of COVID-19 Using Deep Learning Models: India-USA Comparative Case study. – Chaos, Solitons and Fractals, Vol. 140, 2020, p. 110227. DOI: 10.1016/j.chaos.2020.110227.Ouvrir le DOISearch in Google Scholar
Kumar, N., S. Susan. COVID-19 Pandemic Prediction Using Time Series Forecasting Models. – In: Proc. of 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT’20), 2020. DOI: 10.1109/ICCCNT49239.2020.9225319.Ouvrir le DOISearch in Google Scholar
Alassafi, M. O., M. Jarrah, R. Alotaibi. Time Series Predicting of COVID-19 Based on Deep Learning. – Neurocomputing, Vol. 468, 2022, pp. 335-344. DOI: 10.1016/j.neucom.2021.10.035.Ouvrir le DOISearch in Google Scholar
Clerc, M. Particle Swarm Optimization. – Particle Swarm Optimization, 2010, pp. 1942-1948. DOI: 10.1002/9780470612163.Ouvrir le DOISearch in Google Scholar
Gold, J. E., R. A. Okyay, W. E. Licht, D. J. Hurley. Investigation of Long Covid Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. – Pathogens, Vol. 10, 2021, No 6, pp. 1-15. DOI: 10.3390/pathogens10060763.Ouvrir le DOISearch in Google Scholar
Mirjalili, S., S. M. Mirjalili, A. Lewis. Grey Wolf Optimizer. – Advances in Engineering Software, Vol. 69, 2014, pp. 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.Ouvrir le DOISearch in Google Scholar
Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. – Knowledge-Based Systems, Vol. 89, 2015, pp. 228-249. DOI: 10.1016/j.knosys.2015.07.006.Ouvrir le DOISearch in Google Scholar
COVID Live – Coronavirus Statistics – Worldometer. (Accessed 14 June 2022). https://www.worldometers.info/coronavirus/Search in Google Scholar
Sulaiman, M. H., Z. Mustaffa, M. M. Saari, H. Daniyal. Barnacles Mating Optimizer: A New Bio-Inspired Algorithm for Solving Engineering Optimization Problems. – Engineering Applications of Artificial Intelligence, Vol. 87, 2020, pp. 265-270. DOI: 10.1016/j.engappai.2019.103330.Ouvrir le DOISearch in Google Scholar
Sulaiman, M. H., Z. Mustaffa, M. M. Saari, H. Daniyal, I. Musirin, M. R. Daud. Barnacles Mating Optimizer: An Evolutionary Algorithm for Solving Optimization. – In: Proc. of IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS’18), October 2018, pp. 99-104. DOI: 10.1109/I2CACIS.2018.8603703.Ouvrir le DOISearch in Google Scholar
Sulaiman, M. H., et al. Barnacles Mating Optimizer: A Bio-Inspired Algorithm for Solving Optimization Problems. – In: Proc. of 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD’18), Vol. 87, June 2018, No September 2019, pp. 265-270. DOI: 10.1109/SNPD.2018.8441097.Ouvrir le DOISearch in Google Scholar
Abdullah, J. M., T. Ahmed. Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process. – IEEE Access, Vol. 7, 2019, pp. 43473-43486.Search in Google Scholar
Price, K. V., N. H. Awad, M. Z. Ali, P. N. Suganthan. The 100-Digit Challenge: Problem de_nitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization. – School Elect. Electron. Eng., Nanyang Technol. Univ. of Singapore, Tech. Rep., November 2018.Search in Google Scholar
Mirjalili, S. Dragon_y Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems. – Neural Comput. Appl., Vol. 27, May 2015, No 4, pp. 1053-1073.Search in Google Scholar
Mirjaliliab, S., A. Lewisa. The Whale Optimization Algorithm. – Adv. Eng. Softw., Vol. 95, May 2016, pp. 51-67.Search in Google Scholar
Mirjalilia, S., A. H. Gandomibf, S. Z. Mirjalili, C. Saremia, H. Farisd, S. M. Mirjalilie. Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems. – Adv. Eng. Softw., Vol. 114, December 2017, pp. 163-191.Search in Google Scholar
Mirjalili, A., S. Mirjalili. Seyedali Mirjalili. 2015 (Accessed 01 January 2019). http://www.alimirjalili.com/Projects.htmlSearch in Google Scholar