Otwarty dostęp

Design of a MAGLEV System with PID Based Fuzzy Control Using CS Algorithm

Cybernetics and Information Technologies's Cover Image
Cybernetics and Information Technologies
Special issue on Innovations in Intelligent Systems and Applications

Zacytuj

1. Komor, K., T. Yamane. Magnetically Levitated Micro PM Motors by Two Types of Active Magnetic Bearings. – IEEE/ASME Transactions on Mechatronics, Vol. 6, 2001, No 1, pp. 43-49.10.1109/3516.914390 Search in Google Scholar

2. Ono, M., S. Koga, H. Ohtsuki. Japan’s Superconducting Maglev Train. –IEEE Instrumentation and Measurement Magazine, Vol. 5, 2002, pp. 9-15.10.1109/5289.988732 Search in Google Scholar

3. Lin, F. J., H.-J. Shieh, L.-T. Teng. Hybrid Controller with Recurrent Neural Network for Magnetic Levitation System. – IEEE Transactions on Magnetics, Vol. 41, 2005, No 7, pp. 2260-2269.10.1109/TMAG.2005.848320 Search in Google Scholar

4. Tsuda, M., K. Tamashiro, S. Sasaki, T. Yagani, T. Hamajima, T. Yamada, K. Yasui. Vibration Transmission Characteristics Against Vertical Vibration in Magnetic Levitation Type HTS Seismic/Vibration Isolation Device. – IEEE Transactions on Applied Superconductivity, Vol. 19, 2009, No 3, pp. 2249-2252.10.1109/TASC.2009.2019139 Search in Google Scholar

5. Ocokolić, G., B. Rašuo, M. Kozić. Supporting System Interference on Aerodynamic Characteristics of an Aircraft Model in a Low-Speed Wind Tunnel. – Aerospace Science and Technology, Vol. 64, 2017, pp. 133-146.10.1016/j.ast.2017.01.021 Search in Google Scholar

6. Mystkowski, A., A. Kierdelewicz, R. P. Jastrzebski, E. Dragašius, D. Eidukynas. Flux Measurement and Conditioning System for Heteropolar Active Magnetic Bearing Using Kapton-Foil Hall Sensors. – Mechanical Systems and Signal Processing, Vol. 115, 2019, pp. 394-404.10.1016/j.ymssp.2018.05.055 Search in Google Scholar

7. Åström, K. J., T. Hägglund. The Future of PID Control. – Control Engineering Practice, Vol. 9, 2001, No 11, pp. 1163-1175.10.1016/S0967-0661(01)00062-4 Search in Google Scholar

8. Podlubny, I.. Fractional-Order Systems and PIλDμ Controller. – IEEE Transactions on Automatic Control, Vol. 44, 1999, pp. 208-214.10.1109/9.739144 Search in Google Scholar

9. Pan, I., S. Das. Frequency Domain Design of Fractional Order PID Controller for AVR System Using Chaotic Multi-Objective Optimization. – International Journal of Electrical Power & Energy Systems, Vol. 62, 2013, No 3, pp. 106-118.10.1016/j.ijepes.2013.02.021 Search in Google Scholar

10. Melício, R., V. M. F. Mendes, J. P. S. Catalão. Fractional-Order Control and Simulation of Wind Energy Systems with PMSG/Full-Power Converter Topology. – Energy Conversion and Management, Vol. 51, 2010, No 6, pp. 1250-1258.10.1016/j.enconman.2009.12.036 Search in Google Scholar

11. Muresan, C., S. Folea, G. Mois, E. Dulf. Development and Implementation of an FPGA Based Fractional Order Controller for a DC Motor. – Mechatronics, Vol. 23, 2013, No 7, pp. 798-804.10.1016/j.mechatronics.2013.04.001 Search in Google Scholar

12. Aboelela, M. A., M. F. Ahmed, H. T. Dorrah. Design of Aerospace Control Systems Using Fractional PID Controller. – Journal of Advanced Research, Vol. 3, 2012, No 3, pp. 225-232.10.1016/j.jare.2011.07.003 Search in Google Scholar

13. Pop, C. I., C. Lonescu, R. D. Keyser, E. H. Dulf. Robustness Evaluation of Fractional Order Control for Varying Time Delay Processes. – Signal, Image and Video Processing, Vol. 6, 2012, No 3, pp. 453-461.10.1007/s11760-012-0322-4 Search in Google Scholar

14. Lee, C. C. Fuzzy Logic in Control Systems: Fuzzy Logic Controller. Part II. – IEEE Systems, Man, and Cybernetics, Vol. 20, 1990, pp. 419-435.10.1109/21.52552 Search in Google Scholar

15. Woo, Z. W., H. Y. Chung, J. J. Lin. A PID Type Fuzzy Controller with Self-Tuning Scaling Factors. – Fuzzy Sets and Systems, Vol. 115, 2000, No 2, pp. 321-326.10.1016/S0165-0114(98)00159-6 Search in Google Scholar

16. Yesil, E., M. Guzelkaya, I. Eksin. Self Tuning Fuzzy PID Type Load and Frequency Controller. – Energy Conversion and Management, Vol. 45, 2004, No 3, pp. 377-390.10.1016/S0196-8904(03)00149-3 Search in Google Scholar

17. Sahu, B. K., S. Pati, S. Panda. Hybrid Differential Evolution Particle Swarm Optimisation Optimised Fuzzy Proportional-Integral Derivative Controller for Automatic Generation Control of Interconnected Power System. – IET Generation, Transmission & Distribution, Vol. 8, 2014, No 11, pp. 1789-1800.10.1049/iet-gtd.2014.0097 Search in Google Scholar

18. Yogesh, K. B., D. M. Hitesh, S. Houria, B. Surekha. Frequency Stabilization for Multi-Area Thermal-Hydro Power System Using Genetic Algorithm-Optimized Fuzzy Logic Controller in Deregulated Environment. – Electric Power Components and Systems, Vol. 43, 2015, No 2, pp. 146-156.10.1080/15325008.2014.977462 Search in Google Scholar

19. Priyambada, S., B. K. Sahu, P. K. Mohanty. Fuzzy-PID Controller Optimized TLBO Approach on Automatic Voltage Regulator. –In: Proc. of International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE’15), 2015.10.1109/EPETSG.2015.7510115 Search in Google Scholar

20. Ahmad, I., M. Shahzad, P. Palenski. Optimal PID Control of Magnetic Levitation System Using Genetic Algorithm. – IEEE International Energy Conference, 2014, pp. 1429-1433.10.1109/ENERGYCON.2014.6850610 Search in Google Scholar

21. Yadav, S., S. K. Verma, S. K. Nagar. Optimized PID Controller for Magnetic Levitation System. – IFAC-PapersOnLine, Vol. 49, 2016, No 1, pp. 778-782.10.1016/j.ifacol.2016.03.151 Search in Google Scholar

22. Kumar, E. V., J. Jerome. LQR Based Optimal Tuning of PID Controller for Trajectory Tracking of Magnetic Levitation System. – Procedia Engineering, Vol. 64, 2013, pp. 254-264.10.1016/j.proeng.2013.09.097 Search in Google Scholar

23. Yadav, S., S. K. Verma, S. K. Nagar. Performance Enhancement of Magnetic Levitation System Using Teaching Learning Based Optimization. – Alexandria Engineering Journal, Vol. 57, 2017, No 4, pp. 2427-2433.10.1016/j.aej.2017.08.016 Search in Google Scholar

24. Yaseen, M. H. A., H. J. Abd. Modeling and Control for a Magnetic Levitation System Based on SIMLAB Platform in Real Time. – Results in Physics, Vol. 8, 2018, pp. 153-159.10.1016/j.rinp.2017.11.026 Search in Google Scholar

25. Ghosh, A., T. R. Krishnan, P. Tejaswy, A. Mandala, J. K. Pradhan, S. Ranasingh. Design and Implementation of a 2-DOF PID Compensation for Magnetic Levitation Systems. – ISA Transactions, Vol. 53, 2014, No 4, pp. 1216-1222.10.1016/j.isatra.2014.05.01524947430 Search in Google Scholar

26. Sain, D. Real-Time Implementation and Performance Analysis of Robust 2-DOF PID Controller for Maglev System Using Pole Search Technique. – Journal of Industrial Information Integration, Vol. 15, 2019, No 3, pp. 183-190.10.1016/j.jii.2018.11.003 Search in Google Scholar

27. Cetin, M., S. Iplikci. A Novel Auto-Tuning PID-Control Mechanism for Nonlinear Systems. – ISA Transactions, Vol. 58, 2015, pp. 292-308.10.1016/j.isatra.2015.05.01726117284 Search in Google Scholar

28. Swain, S. K., D. Sain, P. Tejaswy, S. K. Mishra, S. Ghosh. Real Time Implementation of Fractional Order PID-Controllers for a Magnetic Levitation Plant. – International Journal of Electronics and Communications, Vol. 78, 2017, pp. 141-156.10.1016/j.aeue.2017.05.029 Search in Google Scholar

29. Pandey, S., P. Dwivedi, A. S. Junghare. A Novel 2-DOF Fractional-Order PIλ-Dμ Controller with Inherent Anti-Windup Capability for a Magnetic Levitation System. – International Journal of Electronics and Communications, Vol. 79, 2017, pp. 158-171.10.1016/j.aeue.2017.05.031 Search in Google Scholar

30. Altintas, G., Y. Aydin. Optimization of Fractional and Integer Order PID Parameters Using Big Bang Big Crunch and Genetic Algorithms for a MAGLEV System. – IFAC-PapersOnLine, Vol. 50, 2017, pp. 4881-4886.10.1016/j.ifacol.2017.08.978 Search in Google Scholar

31. Folea, S., C. I. Muresan, R. De Keyser, C. M. Ionescu. Theoretical Analysis and Experimental Validation of a Simplified Fractional Order Controller for a Magnetic Levitation System. – IEEE Transactions on Control Systems Technology, Vol. 24, 2016, No 2, pp. 756-763. Search in Google Scholar

32. Sain, D., Swain, S. K., T. Kumar, S. K. Mishra. Robust 2-DOF FOPID Controller Design for Maglev System Using Jaya Algorithm. – IETE Journal of Research, 2018.10.1080/03772063.2018.1496800 Search in Google Scholar

33. Roy, P., M. Borah, L. Majhi, N. Singh. Design and Implementation of FOPID Controllers by PSO, GSA and PSOGSA for MagLev System. – In: Proc. of 2015 International Symposium on Advanced Computing and Communication, 2015, pp. 10-15.10.1109/ISACC.2015.7377307 Search in Google Scholar

34. Verma, A., S. Yadav, S. K. Nagar. Optimal Fractional Order PID Controller for Magnetic Levitation System. – In: Proc. of 39th National Systems Conference, 2015, pp. 1-5.10.1109/NATSYS.2015.7489095 Search in Google Scholar

35. Gaidhane, P. J., A. Kumar, M. J. Nigam. Tuning of Two-DOF-FOPID Controller for Magnetic Levitation System: A Multi-Objective Optimization Approach. – In: Proc. of 6th Int. Conf. on Computer Applications in Electrical Engineering-Recent Advances, 2017, pp. 479-484.10.1109/CERA.2017.8343377 Search in Google Scholar

36. Casanas, J. J. H., M. A. M. Vera, B. D. B. Hernandez. Characterization and Adaptive Fuzzy Model Reference Control for a Magnetic Levitation System. – Alexandria Engineering Journal, Vol. 55, 2016, pp. 2597-2607.10.1016/j.aej.2016.04.032 Search in Google Scholar

37. Sadeka, U., A. MSarjas, A. Chowdhurya, R. Svecko. Improved Adaptive Fuzzy Backstepping Control of a Magnetic Levitation System Based on Symbiotic Organism Search. – Applied Soft Computing, Vol. 56, 2017, pp. 19-33.10.1016/j.asoc.2017.02.032 Search in Google Scholar

38. Yang, X.-S., S. Deb. Cuckoo Search via Levy flights. – World Congress on Nature & Biologically Inspired Computing (NaBIC) IEEE Publications, 2009, pp. 210-214.10.1109/NABIC.2009.5393690 Search in Google Scholar

39. Valério, A., J. Sá da Costa. Ninteger: A Non-Integer Control Toolbox for MatLab. –Proceedings of Fractional Differentiation and Its Applications, 2004. Search in Google Scholar

40. Oustaloup, A. La commande CRONE: Commande robuste d’ordre non entire. Herme’s, 1991. Search in Google Scholar

eISSN:
1314-4081
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Computer Sciences, Information Technology