[1. Banerjee, S., A. Y. K. Chua. Applauses in Hotel Reviews: Genuine or Deceptive? – In: Science and Information Conference (SAI), London, IEEE, 2014.10.1109/SAI.2014.6918299]Search in Google Scholar
[2. Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.]Search in Google Scholar
[3. Crawford, M., H. Al Najada. Survey of Review Spam Detection Using Machine Learning Techniques. – Springer, Journal of Big Data, Vol. 2, 2015, No 1, p. 23.10.1186/s40537-015-0029-9]Search in Google Scholar
[4. Crawford, M., T. M. Khoshgoftaar, J. D. Prusa. Reducing Feature Set Explosion to Facilitate Real-World Review Spam Detection. – In: Proc. of 29th International Florida Artificial Intelligence Research Society Conference, AAAI, 2016, pp. 304-309.]Search in Google Scholar
[5. Fei, G., A. Mukherjee, B. Lui, M. Hsu, M. Castellenos, R. Ghosh. Exploiting Burstiness in Reviews for Review Spammer Detection. – In: Proc. of 7th International Conference on Weblogs and Social Media, AAAI, 2013. pp.175-184.10.1609/icwsm.v7i1.14400]Search in Google Scholar
[6. Forman, G. An Extensive Empirical Study of Feature Selection Metrics for Text Classification. – Journal of Machine Learning Research, Vol. 3, 2003, pp. 1289-1305.]Search in Google Scholar
[7. Heredia, B., T. M. Khoshgoftaar, J. D. Prusa, M. Crawford. Improving Detection of Untrustworthy Online Reviews Using Ensemble Learners Combined with Feature Selection. – Springer, Social Network Analysis and Mining, Vol. 7, 2017, No 1, pp. 1-37.10.1007/s13278-017-0456-z]Search in Google Scholar
[8. Heydari, et al. Detection of Review Spam: A Survey. – Expert Systems with Applications, Vol. 42, 2014, No 7, pp. 3634-3642.10.1016/j.eswa.2014.12.029]Search in Google Scholar
[9. Hu, N., I. Bose, S. K. Koh, L. Liu. Manipulation of Online Reviews: An Analysis of Ratings, Readability and Sentiments. – Elsevier, Decision Support Systems, Vol. 52, 2011. pp. 674-684.10.1016/j.dss.2011.11.002]Search in Google Scholar
[10. Jindal, N., B. Liu. Opinion Spam and Analysis. – In: Proc. of 2008 International Conference on Web Search and Data Mining, ACM, 2008, pp. 219-230.10.1145/1341531.1341560]Search in Google Scholar
[11. Kamber, et al. Data Mining: Concepts and Techniques. Second Edition. Elsevier, 2008.]Search in Google Scholar
[12. Li, F., M. Huang, Y. Yang, X. Zhu. Learning to Identify Review Spam. – In: Proc. of 22nd International Joint Conference in Artificial Intelligence, 2011, pp. 2488-2493.]Search in Google Scholar
[13. Li, H., Z. Chen, A. Mukherjee, B. Liu, J. Shao. Analyzing and Detecting Opinion Spam on Large Scale Dataset via Temporal and Spatial Patterns. – In: Proc. of 9th International Conference on Web and Social Media, AAAI, 2015, pp. 634-637.10.1609/icwsm.v9i1.14652]Search in Google Scholar
[14. Li, H., B. Liu, A. Mukherjee, J. Shao. Spotting Fake Reviews Using Positive Unlabeled Learning. – Computacion y Sistemas, Vol. 18, 2014, No 3, pp. 467-475.10.13053/cys-18-3-2035]Search in Google Scholar
[15. Li, S., R. Xia, C. Zong, C. Huang. A Framework of Feature Selection Methods for Text Categorization. – In: Proc. of 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, 2009, pp. 692-700.10.3115/1690219.1690243]Search in Google Scholar
[16. Lim, E. P., J. N. Nguyen, B. Liu, H. W. Lauw. Detecting Product Review Spammers Using Rating Behaviors. – In: Proc. of 19th ACM International Conference on Information and Knowledge Management, ACM, 2010, pp. 939-948.10.1145/1871437.1871557]Search in Google Scholar
[17. Long, N. H., P. H. T. Nghia, N. M. Vuong. Opinion Spam Recognition Method for Online Reviews Using Ontological Features. – Tap Chi KHOA HOC DHSP TPHCM, Vol. 61, 2014, pp. 44-59.]Search in Google Scholar
[18. Mukherjee, A., B. Lui, N. Glance. Spotting Fake Review Groups in Consumer Reviews. – In: Proc. of 21st International Conference on World Wide Web, ACM, 2012, pp. 191-200.10.1145/2187836.2187863]Search in Google Scholar
[19. Mukherjee, A., et al. Spotting Opinion Spammers Using Behavioral Footprints. – In: Proc. of 19th International Conference on Knowledge Discovery and Data Mining, ACM, 2013, pp. 632-640.10.1145/2487575.2487580]Search in Google Scholar
[20. Najada, H. Al, X. Zhu. iSRD: Spam Review Detection with Imbalanced Data Distributions. – In: Proc. of 15th International Conference on Information Reuse and Integration (IRI), IEEE, 2014, pp.553-560.]Search in Google Scholar
[21. Ott, et al. Finding Deceptive Opinion Spam by Any Stretch of Imagination. – In: 49th Annual Meeting of the Association for the Computational Linguistics, Portland, Oregon, 2011, pp 309-319.]Search in Google Scholar
[22. Ott, et al. Estimating the Prevalence of Deception in Online Review Communities. – In: Proc. of 21st International Conference on World Wide Web, ACM, 2012.10.1145/2187836.2187864]Search in Google Scholar
[23. Rastogi, A., M. Mehrotra. Opinion Spam Detection in Online Reviews. – Journal of Information & Knowledge Management, Vol. 16, 2017, No 4, World Scientific Press, pp. 1750036 (38 pages).10.1142/S0219649217500368]Search in Google Scholar
[24. Rayana, S., L. Akoglu. Collective Opinion Spam Detection: Bridging Review Networks and Metadata. – In: Proc. of 21th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 985-994.]Search in Google Scholar
[25. Savage, D., X. Zhang, X. Yu, P. Chou, Q. Wang. Detection of Opinion Spam Based on Anomalous Rating Deviation. – Expert Systems with Applications, Vol. 42, Elsevier, 2015, pp. 8650-8657.10.1016/j.eswa.2015.07.019]Search in Google Scholar
[26. Uysal, A. K. An Improved Global Feature Selection Scheme for Text Classification. – Elsevier, Expert Systems with Applications, Vol. 43, 2016, pp. 82-92.10.1016/j.eswa.2015.08.050]Search in Google Scholar
[27. Uysal, A. K., S. Gunal. A Novel Probabilistic Feature Selection Method for Text Classification. – Knowledge-Based Systems, Vol. 36, 2012, pp. 226-235.10.1016/j.knosys.2012.06.005]Search in Google Scholar
[28. Wang, G., S. Xie, B. Lui, P. S. Yu. Review Graph Based Online Store Review Spammer Detection. – In: Proc. of 11th IEEE International Conference on Data Mining (ICDM’11), 2011, pp. 1242-1247.10.1109/ICDM.2011.124]Search in Google Scholar
[29. Wang, G., S. Xie, B. Lui, P. S. Yu. Identify Online Store Review Spammers via Social Review Graph. – ACM Transactions on Intelligent Systems and Technology, Vol. 3, 2012, No 4, pp. 1-21.10.1145/2337542.2337546]Search in Google Scholar