1. bookVolume 18 (2018): Edizione 4 (November 2018)
Dettagli della rivista
License
Formato
Rivista
eISSN
1314-4081
Prima pubblicazione
13 Mar 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Spam Review Classification Using Ensemble of Global and Local Feature Selectors

Pubblicato online: 14 Dec 2018
Volume & Edizione: Volume 18 (2018) - Edizione 4 (November 2018)
Pagine: 29 - 42
Ricevuto: 15 May 2018
Accettato: 21 Nov 2018
Dettagli della rivista
License
Formato
Rivista
eISSN
1314-4081
Prima pubblicazione
13 Mar 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Banerjee, S., A. Y. K. Chua. Applauses in Hotel Reviews: Genuine or Deceptive? – In: Science and Information Conference (SAI), London, IEEE, 2014.10.1109/SAI.2014.6918299Search in Google Scholar

2. Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.Search in Google Scholar

3. Crawford, M., H. Al Najada. Survey of Review Spam Detection Using Machine Learning Techniques. – Springer, Journal of Big Data, Vol. 2, 2015, No 1, p. 23.10.1186/s40537-015-0029-9Search in Google Scholar

4. Crawford, M., T. M. Khoshgoftaar, J. D. Prusa. Reducing Feature Set Explosion to Facilitate Real-World Review Spam Detection. – In: Proc. of 29th International Florida Artificial Intelligence Research Society Conference, AAAI, 2016, pp. 304-309.Search in Google Scholar

5. Fei, G., A. Mukherjee, B. Lui, M. Hsu, M. Castellenos, R. Ghosh. Exploiting Burstiness in Reviews for Review Spammer Detection. – In: Proc. of 7th International Conference on Weblogs and Social Media, AAAI, 2013. pp.175-184.Search in Google Scholar

6. Forman, G. An Extensive Empirical Study of Feature Selection Metrics for Text Classification. – Journal of Machine Learning Research, Vol. 3, 2003, pp. 1289-1305.Search in Google Scholar

7. Heredia, B., T. M. Khoshgoftaar, J. D. Prusa, M. Crawford. Improving Detection of Untrustworthy Online Reviews Using Ensemble Learners Combined with Feature Selection. – Springer, Social Network Analysis and Mining, Vol. 7, 2017, No 1, pp. 1-37.10.1007/s13278-017-0456-zSearch in Google Scholar

8. Heydari, et al. Detection of Review Spam: A Survey. – Expert Systems with Applications, Vol. 42, 2014, No 7, pp. 3634-3642.10.1016/j.eswa.2014.12.029Search in Google Scholar

9. Hu, N., I. Bose, S. K. Koh, L. Liu. Manipulation of Online Reviews: An Analysis of Ratings, Readability and Sentiments. – Elsevier, Decision Support Systems, Vol. 52, 2011. pp. 674-684.10.1016/j.dss.2011.11.002Search in Google Scholar

10. Jindal, N., B. Liu. Opinion Spam and Analysis. – In: Proc. of 2008 International Conference on Web Search and Data Mining, ACM, 2008, pp. 219-230.10.1145/1341531.1341560Search in Google Scholar

11. Kamber, et al. Data Mining: Concepts and Techniques. Second Edition. Elsevier, 2008.Search in Google Scholar

12. Li, F., M. Huang, Y. Yang, X. Zhu. Learning to Identify Review Spam. – In: Proc. of 22nd International Joint Conference in Artificial Intelligence, 2011, pp. 2488-2493.Search in Google Scholar

13. Li, H., Z. Chen, A. Mukherjee, B. Liu, J. Shao. Analyzing and Detecting Opinion Spam on Large Scale Dataset via Temporal and Spatial Patterns. – In: Proc. of 9th International Conference on Web and Social Media, AAAI, 2015, pp. 634-637.Search in Google Scholar

14. Li, H., B. Liu, A. Mukherjee, J. Shao. Spotting Fake Reviews Using Positive Unlabeled Learning. – Computacion y Sistemas, Vol. 18, 2014, No 3, pp. 467-475.10.13053/cys-18-3-2035Search in Google Scholar

15. Li, S., R. Xia, C. Zong, C. Huang. A Framework of Feature Selection Methods for Text Categorization. – In: Proc. of 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, 2009, pp. 692-700.10.3115/1690219.1690243Search in Google Scholar

16. Lim, E. P., J. N. Nguyen, B. Liu, H. W. Lauw. Detecting Product Review Spammers Using Rating Behaviors. – In: Proc. of 19th ACM International Conference on Information and Knowledge Management, ACM, 2010, pp. 939-948.10.1145/1871437.1871557Search in Google Scholar

17. Long, N. H., P. H. T. Nghia, N. M. Vuong. Opinion Spam Recognition Method for Online Reviews Using Ontological Features. – Tap Chi KHOA HOC DHSP TPHCM, Vol. 61, 2014, pp. 44-59.Search in Google Scholar

18. Mukherjee, A., B. Lui, N. Glance. Spotting Fake Review Groups in Consumer Reviews. – In: Proc. of 21st International Conference on World Wide Web, ACM, 2012, pp. 191-200.10.1145/2187836.2187863Search in Google Scholar

19. Mukherjee, A., et al. Spotting Opinion Spammers Using Behavioral Footprints. – In: Proc. of 19th International Conference on Knowledge Discovery and Data Mining, ACM, 2013, pp. 632-640.10.1145/2487575.2487580Search in Google Scholar

20. Najada, H. Al, X. Zhu. iSRD: Spam Review Detection with Imbalanced Data Distributions. – In: Proc. of 15th International Conference on Information Reuse and Integration (IRI), IEEE, 2014, pp.553-560.Search in Google Scholar

21. Ott, et al. Finding Deceptive Opinion Spam by Any Stretch of Imagination. – In: 49th Annual Meeting of the Association for the Computational Linguistics, Portland, Oregon, 2011, pp 309-319.Search in Google Scholar

22. Ott, et al. Estimating the Prevalence of Deception in Online Review Communities. – In: Proc. of 21st International Conference on World Wide Web, ACM, 2012.10.1145/2187836.2187864Search in Google Scholar

23. Rastogi, A., M. Mehrotra. Opinion Spam Detection in Online Reviews. – Journal of Information & Knowledge Management, Vol. 16, 2017, No 4, World Scientific Press, pp. 1750036 (38 pages).10.1142/S0219649217500368Search in Google Scholar

24. Rayana, S., L. Akoglu. Collective Opinion Spam Detection: Bridging Review Networks and Metadata. – In: Proc. of 21th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 985-994.Search in Google Scholar

25. Savage, D., X. Zhang, X. Yu, P. Chou, Q. Wang. Detection of Opinion Spam Based on Anomalous Rating Deviation. – Expert Systems with Applications, Vol. 42, Elsevier, 2015, pp. 8650-8657.10.1016/j.eswa.2015.07.019Search in Google Scholar

26. Uysal, A. K. An Improved Global Feature Selection Scheme for Text Classification. – Elsevier, Expert Systems with Applications, Vol. 43, 2016, pp. 82-92.10.1016/j.eswa.2015.08.050Search in Google Scholar

27. Uysal, A. K., S. Gunal. A Novel Probabilistic Feature Selection Method for Text Classification. – Knowledge-Based Systems, Vol. 36, 2012, pp. 226-235.10.1016/j.knosys.2012.06.005Search in Google Scholar

28. Wang, G., S. Xie, B. Lui, P. S. Yu. Review Graph Based Online Store Review Spammer Detection. – In: Proc. of 11th IEEE International Conference on Data Mining (ICDM’11), 2011, pp. 1242-1247.10.1109/ICDM.2011.124Search in Google Scholar

29. Wang, G., S. Xie, B. Lui, P. S. Yu. Identify Online Store Review Spammers via Social Review Graph. – ACM Transactions on Intelligent Systems and Technology, Vol. 3, 2012, No 4, pp. 1-21.10.1145/2337542.2337546Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo