Otwarty dostęp

Deep learning based non-intrusive load monitoring with low resolution data from smart meters


Zacytuj

1. G. F. Angelis, C. Timplalexis, S. Krinidis, D. Ioannidis, and D. Tzovaras, Nilm applications: Literature review of learning approaches, recent developments and challenges, Energy and Buildings, p. 111951, 2022.10.1016/j.enbuild.2022.111951 Search in Google Scholar

2. A. R. Al Ali, I. A. Zualkernan, M. Rashid, R. Gupta, and M. Alikarar, A smart home energy management system using iot and big data analytics approach, IEEE Transactions on Consumer Electronics, vol. 63, no. 4, pp. 426–434, 2017.10.1109/TCE.2017.015014 Search in Google Scholar

3. D. M. Han and J. H. Lim, Smart home energy management system using ieee 802.15.4 and zigbee, IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1403–1410, 2010.10.1109/TCE.2010.5606276 Search in Google Scholar

4. F. M. Wittmann, J. C. L/opez, and M. J. Rider, Nonintrusive load monitoring algorithm using mixedinteger linear programming, IEEE Transactions on Consumer Electronics, vol. 64, no. 2, pp. 180–187, 2018.10.1109/TCE.2018.2843292 Search in Google Scholar

5. K. C. Armel, A. Gupta, G. Shrimali, and A. Albert, Is disaggregation the holy grail of energy efficiency? the case of electricity, Energy Policy, vol. 52, pp. 213–234, 2013.10.1016/j.enpol.2012.08.062 Search in Google Scholar

6. G. W. Hart, Nonintrusive appliance load monitoring, Proceedings of the IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.10.1109/5.192069 Search in Google Scholar

7. E. Elhamifar and S. Sastry, Energy disaggregation via learning powerlets and sparse coding., in AAAI, pp. 629–635, AAAI, 2015.10.1609/aaai.v29i1.9249 Search in Google Scholar

8. S. Gupta, M. S. Reynolds, and S. N. Patel, Electrisense: single-point sensing using emi for electrical event detection and classification in the home, in Proceedings of the 12th ACM international conference on Ubiquitous computing, pp. 139–148, ACM, 2010.10.1145/1864349.1864375 Search in Google Scholar

9. G. Kalogridis, C. Efthymiou, S. Z. Denic, T. A. Lewis, and R. Cepeda, Privacy for smart meters: Towards undetectable appliance load signatures, in Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, pp. 232–237, IEEE, 2010.10.1109/SMARTGRID.2010.5622047 Search in Google Scholar

10. A. Prudenzi, A neuron nets based procedure for identifying domestic appliances pattern-of-use from energy recordings at meter panel, in Power Engineering Society Winter Meeting, 2002. IEEE, vol. 2, pp. 941–946, IEEE, 2002. Search in Google Scholar

11. K. Basu, V. Debusschere, A. Douzal-Chouakria, and S. Bacha, Time series distance-based methods for non-intrusive load monitoring in residential buildings, Energy and Buildings, vol. 96, pp. 109–117, 2015.10.1016/j.enbuild.2015.03.021 Search in Google Scholar

12. K. Basu, V. Debusschere, S. Bacha, U. Maulik, and S. Bondyopadhyay, Nonintrusive load monitoring: A temporal multilabel classification approach, IEEE Transactions on Industrial informatics, vol. 11, no. 1, pp. 262–270, 2015.10.1109/TII.2014.2361288 Search in Google Scholar

13. H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, Unsupervised disaggregation of low frequency power measurements, in Proceedings of the 2011 SIAM international conference on data mining, pp. 747–758, SIAM, 2011.10.1137/1.9781611972818.64 Search in Google Scholar

14. O. Parson, S. Ghosh, M. Weal, and A. Rogers, Non-intrusive load monitoring using prior models of general appliance types, in Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI, 2012. Search in Google Scholar

15. A. Cominola, M. Giuliani, D. Piga, A. Castelletti, and A. E. Rizzoli, A hybrid signature-based iterative disaggregation algorithm for non-intrusive load monitoring, Applied energy, vol. 185, pp. 331–344, 2017.10.1016/j.apenergy.2016.10.040 Search in Google Scholar

16. L. Massidda and M. Marrocu, A bayesian approach to unsupervised, non-intrusive load disaggregation, Sensors, vol. 22, no. 12, p. 4481, 2022.10.3390/s22124481922926935746263 Search in Google Scholar

17. F. Hidiyanto and A. Halim, Knn methods with varied k, distance and training data to disaggregate nilm with similar load characteristic, in Proceedings of the 3rd Asia Pacific Conference on Research in Industrial and Systems Engineering 2020, pp. 93–99, ACM, 2020.10.1145/3400934.3400953 Search in Google Scholar

18. M. Singh, S. Kumar, S. Semwal, and R. Prasad, Residential load signature analysis for their segregation using wavelet - svm, in Power Electronics and Renewable Energy Systems, pp. 863–871, Springer, 2015.10.1007/978-81-322-2119-7_84 Search in Google Scholar

19. F. Gong, N. Han, Y. Zhou, S. Chen, D. Li, and S. Tian, A svm optimized by particle swarm optimization approach to load disaggregation in non-intrusive load monitoring in smart homes, in 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), pp. 1793–1797, IEEE, 2019.10.1109/EI247390.2019.9062124 Search in Google Scholar

20. M. Hasan, D. Chowdhury, M. Khan, Z. Rahman, et al., Non-intrusive load monitoring using current shapelets, Applied Sciences, vol. 9, no. 24, p. 5363, 2019.10.3390/app9245363 Search in Google Scholar

21. Z. Xiao, W. Gang, J. Yuan, Y. Zhang, and C. Fan, Cooling load disaggregation using a nilm method based on random forest for smart buildings, Sustainable Cities and Society, vol. 74, p. 103202, 2021.10.1016/j.scs.2021.103202 Search in Google Scholar

22. X. Wu, Y. Gao, and D. Jiao, Multi-label classification based on random forest algorithm for nonintrusive load monitoring system, Processes, vol. 7, no. 6, p. 337, 2019.10.3390/pr7060337 Search in Google Scholar

23. J. Kelly and W. Knottenbelt, Neural nilm: Deep neural networks applied to energy disaggregation, in Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, pp. 55–64, ACM, 2015.10.1145/2821650.2821672 Search in Google Scholar

24. D. Murray, L. Stankovic, V. Stankovic, S. Lulic, and S. Sladojevic, Transferability of neural network approaches for low-rate energy disaggregation, in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8330–8334, IEEE, 2019.10.1109/ICASSP.2019.8682486 Search in Google Scholar

25. M. D’Incecco, S. Squartini, and M. Zhong, Transfer learning for non-intrusive load monitoring, IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1419–1429, 2019.10.1109/TSG.2019.2938068 Search in Google Scholar

26. J. Jiang, Q. Kong, M. D. Plumbley, N. Gilbert, M. Hoogendoorn, and D. M. Roijers, Deep learningbased energy disaggregation and on/off detection of household appliances, ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 15, no. 3, pp. 1–21, 2021.10.1145/3441300 Search in Google Scholar

27. O. Krystalakos, C. Nalmpantis, and D. Vrakas, Sliding window approach for online energy disaggregation using artificial neural networks, in Proceedings of the 10th Hellenic Conference on Artificial Intelligence, pp. 1–6, ACM, 2018.10.1145/3200947.3201011 Search in Google Scholar

28. J. Song, H. Wang, M. Du, L. Peng, S. Zhang, and G. Xu, Non-intrusive load identification method based on improved long short term memory network, Energies, vol. 14, no. 3, p. 684, 2021.10.3390/en14030684 Search in Google Scholar

29. H. C. imen, N. C. etinkaya, J. C. Vasquez, and J. M. Guerrero, A microgrid energy management system based on non-intrusive load monitoring via multitask learning, IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 977–987, 2020.10.1109/TSG.2020.3027491 Search in Google Scholar

30. M. Valenti, R. Bonfigli, E. Principi, and S. Squartini, Exploiting the reactive power in deep neural models for non-intrusive load monitoring, in 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2018.10.1109/IJCNN.2018.8489271 Search in Google Scholar

31. A. Faustine, L. Pereira, H. Bousbiat, and S. Kulkarni, Unet-nilm: A deep neural network for multitasks appliances state detection and power estimation in nilm, in Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring, pp. 84–88, ACM, 2020.10.1145/3427771.3427859 Search in Google Scholar

32. Z. Yue, C. R. Witzig, D. Jorde, and H. A. Jacobsen, Bert4nilm: A bidirectional transformer model for non-intrusive load monitoring, in Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring, pp. 89–93, ACM, 2020.10.1145/3427771.3429390 Search in Google Scholar

33. V. Piccialli and A. M. Sudoso, Improving non-intrusive load disaggregation through an attentionbased deep neural network, Energies, vol. 14, no. 4, p. 847, 2021.10.3390/en14040847 Search in Google Scholar

34. L. Massidda, M. Marrocu, and S. Manca, Non-intrusive load disaggregation by convolutional neural network and multilabel classification, Applied Sciences, vol. 10, no. 4, p. 1454, 2020.10.3390/app10041454 Search in Google Scholar

35. L. Massidda, M. Marrocu, and S. Manca, Non-intrusive load disaggregation via a fully convolutional neural network: improving the accuracy on unseen household, in 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), vol. 1, pp. 317–322, IEEE, 2020.10.1109/IESES45645.2020.9210661 Search in Google Scholar

36. R. Terracciano, V. Galdi, V. Calderaro, D. Pappalardo, G. Ceneri, and A. O. Piti, Demand side management services for smart buildings with the use of second generation smart meter and the chain-2 of e-distribuzione, in 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), pp. 1–6, IEEE, 2020.10.1109/EEEIC/ICPSEurope49358.2020.9160752 Search in Google Scholar

37. D. Serra, D. Mardero, L. Di Stefano, and S. Grillo, Post-metering value-added services for low voltage electricity users: Lessons learned from the italian experience of chain 2, Applied Energy, vol. 304, p. 117806, Dec 2021.10.1016/j.apenergy.2021.117806 Search in Google Scholar

38. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid scene parsing network, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890, IEEE, 2017.10.1109/CVPR.2017.660 Search in Google Scholar

39. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An imperative style, high-performance deep learning library, in Advances in Neural Information Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019. Search in Google Scholar

40. S. Vitiello, N. Andreadou, M. Ardelean, and G. Fulli, Smart metering roll-out in europe: Where do we stand? cost benefit analyses in the clean energy package and research trends in the green deal, Energies, vol. 15, no. 7, p. 2340, 2022.10.3390/en15072340 Search in Google Scholar

41. C. Staff, Cei-en 50065-1, signalling on low-voltage electrical installations in the frequency range 3 khz to 148.5 khz part 1: General requirements, frequency bands and electromagnetic disturbances, CEI Standards, 2012. Search in Google Scholar

42. C. Staff, Cei ts 13-82:2017-08, sistemi di misura dell’energia elettrica - comunicazione con i dispositivi utente, parte 2: Modello dati e modello applicativo., CEI Standards, 2012. Search in Google Scholar

43. J. Kelly and W. Knottenbelt, The uk-dale dataset, domestic appliance-level electricity demand and whole-house demand from five uk homes, Scientific data, vol. 2, p. 150007, 2015.10.1038/sdata.2015.7 Search in Google Scholar

44. D. Murray, L. Stankovic, and V. Stankovic, An electrical load measurements dataset of united kingdom households from a two-year longitudinal study, Scientific data, vol. 4, no. 1, pp. 1–12, 2017.10.1038/sdata.2016.122531549528055033 Search in Google Scholar

45. P. Laviron, X. Dai, B. Huquet, and T. Palpanas, Electricity demand activation extraction: From known to unknown signatures, using similarity search, in Proceedings of the Twelfth ACM International Conference on Future Energy Systems, pp. 148–159, ACM, 2021.10.1145/3447555.3464865 Search in Google Scholar

46. H. Rafiq, X. Shi, H. Zhang, H. Li, and M. K. Ochani, A deep recurrent neural network for nonintrusive load monitoring based on multi-feature input space and post-processing, Energies, vol. 13, no. 9, p. 2195, 2020.10.3390/en13092195 Search in Google Scholar

47. G. Zhou, Z. Li, M. Fu, Y. Feng, X. Wang, and C. Huang, Sequence-to-sequence load disaggregation using multiscale residual neural network, IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–10, 2020.10.1109/TIM.2020.3034989 Search in Google Scholar

48. C. Puente, R. Palacios, Y. Gonz/alez-Arechavala, and E. F. S/anchez-/Ubeda, Non-intrusive load monitoring (nilm) for energy disaggregation using soft computing techniques, Energies, vol. 13, no. 12, p. 3117, 2020.10.3390/en13123117 Search in Google Scholar

49. Y. Pan, K. Liu, Z. Shen, X. Cai, and Z. Jia, Sequence-to-subsequence learning with conditional gan for power disaggregation, in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3202–3206, IEEE, 2020.10.1109/ICASSP40776.2020.9053947 Search in Google Scholar

eISSN:
2038-0909
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics