Otwarty dostęp

Overview of Multifunctional (Ultra-)Lightweight Materials for a Sustainable Future

, ,  oraz   
09 lis 2024

Zacytuj
Pobierz okładkę

Alhalaili, B., Popescu, I. N., Rusanescu, C. O., & Vidu, R. (2022). Microfluidic devices and microfluidics-integrated electrochemical and optical (Bio) Sensors for pollution analysis: a review. Sustainability, 14(19), 12844, https://doi.org/10.3390/su141912844. Search in Google Scholar

Thienel, K. C., Haller, T., & Beuntner, N. (2020). Lightweight concrete—From basics to innovations. Materials, 13(5), 1120, https://doi.org/10.3390/ma13051120 Search in Google Scholar

Sun, G., Chen, D., Zhu, G., & Li, Q. (2022). Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Structures, 172, 108760. https://doi.org/10.1016/j.tws.2021.108760 Search in Google Scholar

Jiang, B., He, C., Zhao, N., Nash, P., Shi, C., & Wang, Z. (2015). Ultralight metal foams. Scientific reports, 5(1), 13825. DOI: 10.1038/srep13825 Search in Google Scholar

Sun, H., Xu, Z., & Gao, C. (2013). Multifunctional, ultraflyweight, synergistically assembled carbon aerogels. Advanced materials, 25(18), 2554-2560. DOI: 10.1002/adma.201204576 Search in Google Scholar

Du, Q. F., & Huai, X. G. (2020, August). Research on multifunctional characteristics and application of ultralight porous metal materials based on structured. In Materials Science Forum (Vol. 1001, pp. 67-72). Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/MSF.1001.67 Search in Google Scholar

He, H., Wei, X., Yang, B., Liu, H., Sun, M., Li, Y., & Xu, L. (2022). Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers. Nature Communications, 13(1), 4242. https://doi.org/10.1038/s41467-022-31957-2 Search in Google Scholar

Chen, J., & Zhang, D. (2023). Multifunctional properties and applications of ultra-light porous metal materials. In MATEC Web of Conferences (Vol. 380, p. 01026). EDP Sciences. https://doi.org/10.1051/matecconf/202338001026 Search in Google Scholar

Huang, Y., & Wang, X. (2023). Challenges and Trends for Multifunctional Materials. Journal of Building Material Science, 5(1), 17-19. https://doi.org/10.30564/jbms.v5i1.5521 Search in Google Scholar

Lendlein, A., Trask, R.S., 2018. Multifunctional materials: Concepts, function-structure relationships, knowledgebased design, translational materials research. Multifunctional Materials. 1, 010201, DOI 10.1088/2399-7532/aada7b Search in Google Scholar

Costa, C. M., Costa, P., & Lanceros-Mendez, S. (2021). Overview on lightweight, multifunctional materials. In Advanced Lightweight Multifunctional Materials (pp. 1-24). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818501-8.00002-0 Search in Google Scholar

Gao, Y., Zhou, Y., Yang, Q., Guo, L., & Jiang, L. (2015). Ultralight materials. Progress in Chemistry, 27(12), 1714, https://doi.org/10.7536/PC150634. Search in Google Scholar

Zou, J., Liu, J., Karakoti, A. S., Kumar, A., Joung, D., Li, Q., ... & Zhai, L. (2010). Ultralight multiwalled carbon nanotube aerogel. ACS nano, 4(12), 7293-7302, https://doi.org/10.1021/nn102246a. Search in Google Scholar

Chen, Y., Yang, Y., Xiong, Y., Zhang, L., Xu, W., Duan, G., ... & Zhang, K. (2021). Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today, 38, 101204. https://doi.org/10.1016/j.nantod.2021.101204 Search in Google Scholar

Akhter, F., Soomro, S. A., & Inglezakis, V. J. (2021). Silica aerogels; a review of synthesis, applications and fabrication of hybrid composites. Journal of Porous Materials, 28(5), 1387-1400, https://doi.org/10.1007/s10934-021-01091-3. Search in Google Scholar

Tappan, B. C., Huynh, M. H., Hiskey, M. A., Chavez, D. E., Luther, E. P., Mang, J. T., & Son, S. F. (2006). Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. Journal of the American Chemical Society, 128(20), 6589-6594. https://doi.org/10.1021/ja056550k Search in Google Scholar

Fujii, S., Ryan, A. J., & Armes, S. P. (2006). Long-range structural order, moiré patterns, and iridescence in latexstabilized foams. Journal of the American Chemical Society, 128(24), 7882-7886, https://doi.org/10.1021/ja060640n. Search in Google Scholar

Wu, G., Xie, P., Yang, H., Dang, K., Xu, Y., Sain, M., ... & Yang, W. (2021). A review of thermoplastic polymer foams for functional applications. Journal of Materials Science, 56, 11579-11604, https://doi.org/10.1007/s10853-021-06034-6. Search in Google Scholar

Mi, H., Yang, J., Su, Z., Wang, T., Li, Z., Huo, W., & Qu, Y. (2017). Preparation of ultra-light ceramic foams from waste glass and fly ash. Advances in Applied Ceramics, 116(7), 400-408. doi:10.1080/17436753.2017.1342394 Search in Google Scholar

Yin, J., Li, X., Zhou, J., & Guo, W. (2013). Synergistically three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano letters, 13(7), 3232-3236. https://doi.org/10.1021/nl401308v Search in Google Scholar

Cui, Z., Luob, X., Xiao, S., Luo, X., Liu, Y., Liu, M., ... & Guo, H. (2023). Effect of sintering temperature on properties of lightweightporous ceramics prepared by foam impregnation method. Journal of Ceramic Processing Research, 24(5), 835-840, DOI : 10.36410/jcpr.2023.24.5.835. Search in Google Scholar

Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorensen, A. E., Lian, J., Greer, J. R., ... & Carter, W. B. (2011). Ultralight metallic microlattices. Science, 334(6058), 962-965, DOI: 10.1126/science.1211649. Search in Google Scholar

Xiong, J., Mines, R., Ghosh, R., Vaziri, A., Ma, L., Ohrndorf, A., ... & Wu, L. (2015). Advanced micro-lattice materials. Advanced Engineering Materials, 17(9), 1253-1264, https://doi.org/10.1002/adem.201400471 Search in Google Scholar

Du, R., & Eychmüller, A. (2023). Metal-Based Aerogels and Porous Composites as Efficient Catalysts: Synthesis and Catalytic Performance. Catalysts, 13(11), 1451, https://doi.org/10.3390/catal13111451. Search in Google Scholar

Yeo, S. J., Oh, M. J., & Yoo, P. J. (2019). Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Advanced Materials, 31(34), 1803670. https://doi.org/10.1002/adma.201803670 Search in Google Scholar

Zhang, X., Wang, Y., Ding, B., & Li, X. (2020). Design, fabrication, and mechanics of 3D micro- /nanolattices. Small, 16(15), 1902842. https://doi.org/10.1002/smll.201902842 Search in Google Scholar

Soorbaghi, F. P., Isanejad, M., Salatin, S., Ghorbani, M., Jafari, S., & Derakhshankhah, H. (2019). Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomedicine & Pharmacotherapy, 111, 964-975, https://doi.org/10.1016/j.biopha.2019.01.014. Search in Google Scholar

Karamikamkar, S., Naguib, H. E., & Park, C. B. (2020). Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Advances in colloid and interface science, 276, 102101, https://doi.org/10.1016/j.cis.2020.102101. Search in Google Scholar

Maleki, H., Durães, L., García-González, C. A., Del Gaudio, P., Portugal, A., & Mahmoudi, M. (2016). Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in colloid and interface science, 236, 1-27. https://doi.org/10.1016/j.cis.2016.05.011 Search in Google Scholar

James, A., & Yadav, D. (2022). Bioaerogels, the emerging technology for wastewater treatment: A comprehensive review on synthesis, properties and applications. Environmental Research, 212, 113222, https://doi.org/10.1016/j.envres.2022.113222. Search in Google Scholar

Bhagat, S.D., Rao, A.V., 2006. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process, Applied Surface Science 252, p. 4289, https://doi.org/10.1016/j.apsusc.2005.07.006. Search in Google Scholar

Błaszczyński, T., Ślosarczyk, A., & Morawski, M. (2013). Synthesis of silica aerogel by supercritical drying method. Procedia Engineering, 57, 200-206, DOI: 10.1016/j.proeng.2013.04.028 Search in Google Scholar

Kocon, L., Despetis, F., & Phalippou, J. (1998). Ultralow density silica aerogels by alcohol supercritical drying. Journal of Non-Crystalline Solids, 225, 96-100, https://doi.org/10.1016/S0022-3093(98)00322-6 Search in Google Scholar

Dorcheh, A. S., & Abbasi, M. H. (2008). Silica aerogel; synthesis, properties and characterization. Journal of materials processing technology, 199(1-3), 10-26, https://doi.org/10.1016/j.jmatprotec.2007.10.060. Search in Google Scholar

Li, K., He, S., Du, C., Guo, S., & Huang, Y. (2024). Ultra flexible silica aerogel with excellent mechanical properties for durable oil-water separation. Journal of Environmental Chemical Engineering, 12(5), 113752. Search in Google Scholar

Sun, H., Xu, Z., & Gao, C. (2013). Multifunctional, ultraflyweight, synergistically assembled carbon aerogels. Advanced materials, 25(18), 2554-2560. https://doi.org/10.1002/adma.201204576 Search in Google Scholar

Li, B., Tian, H., Li, L., Liu, W., Liu, J., Zeng, Z., & Wu, N. (2024). Graphene-Assisted Assembly of Electrically and Magnetically Conductive Ceramic Nanofibrous Aerogels Enable Multifunctionality. Adv. Funct. Mater, 2314653, https://doi.org/10.1002/adfm.202314653. Search in Google Scholar

Li, J., Li, J., Meng, H., Xie, S., Zhang, B., Li, L., ... & Yu, M. (2014). Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem A, 2(9), 2934-2941, https://doi.org/10.1039/C3TA14725H Search in Google Scholar

Qian, Y., Ismail, I. M., & Stein, A. (2014). Ultralight, highsurface- area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon, 68, 221-231, https://doi.org/10.1016/j.carbon.2013.10.082 Search in Google Scholar

Kistler, S. S. (1931). Coherent expanded aerogels and jellies. Nature, 127(3211), 741-741, https://doi.org/10.1038/127741a0. Search in Google Scholar

Pornea, A. G. M., Puguan, J. M. C., Ruello, J. L. A., & Kim, H. (2022). Multifunctional dual-pore network aerogel composite material for broadband sound absorption, thermal insulation, and fire repellent applications. ACS Applied Polymer Materials, 4(4), 2880-2895. https://doi.org/10.1021/acsapm.2c00139 Search in Google Scholar

Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277, https://doi.org/10.1021/bm700972k Search in Google Scholar

Effraimopoulou, E., Jaxel, J., Budtova, T., & Rigacci, A. (2024). Hydrophobic Modification of Pectin Aerogels via Chemical Vapor Deposition. Polymers, 16(12), 1628. DOI 10.3390/polym16121628 Search in Google Scholar

Nita, L. E., Ghilan, A., Rusu, A. G., Neamtu, I., & Chiriac, A. P. (2020). New trends in bio-based aerogels. Pharmaceutics, 12(5), 449, https://doi.org/10.3390/pharmaceutics12050449 Search in Google Scholar

Mecklenburg, M., Schuchardt, A., Mishra, Y. K., Kaps, S., Adelung, R., Lotnyk, A., ... & Schulte, K. (2012). Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Advanced Materials, 24(26), 3486-3490. https://doi.org/10.1002/adma.201200491 Search in Google Scholar

Jiang, F., & Hsieh, Y. L. (2014). Super water absorbing and shape memory nanocellulose aerogels from TEMPOoxidized cellulose nanofibrils via cyclic freezing– thawing. Journal of Materials Chemistry A, 2(2), 350-359, https://doi.org/10.1039/C3TA13629A Search in Google Scholar

Jiang, X., Du, R., Hübner, R., Hu, Y., & Eychmüller, A. (2021). A roadmap for 3D metal aerogels: materials design and application attempts. Matter, 4(1), 54-94, https://doi.org/10.1016/j.matt.2020.10.001 Search in Google Scholar

Pan, W.; Liang, C.; Sui, Y.; Wang, J.; Liu, P.; Zou, P.; Guo, Z.; Wang, F.; Ren, X.; Yang, C. A Highly Compressible, Elastic, and Air-Dryable Metallic Aerogels via Magnetic Field-Assisted Synthesis. Adv. Funct. Mater. 2022, 32, 2204166, https://doi.org/10.1002/adfm.202204166 Search in Google Scholar

Sonu, S.S., Rai, N. & Chauhan, I. Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels. J Sol-Gel Sci Technol 105, 324– 336 (2023). https://doi.org/10.1007/s10971-022-06026-1 Search in Google Scholar

Wen, D., Liu, W., Haubold, D., Zhu, C., Oschatz, M., Holzschuh, M., Wolf, A., Simon, F., Kaskel, S., and Eychmu¨ller, A. (2016). Gold aerogels: three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano 10, 2559–2567, https://doi.org/10.1021/acsnano.5b07505 Search in Google Scholar

Selvasekaran, P., & Chidambaram, R. (2021). Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends in Food Science & Technology, 112, 455-470, https://doi.org/10.1016/j.tifs.2021.04.021. Search in Google Scholar

García-González, C. A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., & Alvarez-Lorenzo, C. (2021). Aerogels in drug delivery: From design to application. Journal of Controlled Release, 332, 40-63, https://doi.org/10.1016/j.jconrel.2021.02.012. Search in Google Scholar

Liu, Z., Zhang, S., He, B., Wang, S., & Kong, F. (2021). Synthesis of cellulose aerogels as promising carriers for drug delivery: a review. Cellulose, 28, 2697-2714, https://doi.org/10.1007/s10570-021-03734-9. Search in Google Scholar

Liu, H., Xing, F., Yu, P., Zhe, M., Shakya, S., Liu, M., ... & Ritz, U. (2024). Multifunctional aerogel: A unique and advanced biomaterial for tissue regeneration and repair. Materials & Design, 243, 113091, https://doi.org/10.1016/j.matdes.2024.113091. Search in Google Scholar

Zhou, F., Feng, X., Yu, J., & Jiang, X. (2018). High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd (II) and Pb (II). Environmental Science and Pollution Research, 25, 15651-15661, https://doi.org/10.1007/s11356-018-1733-8. Search in Google Scholar

Almeida, C. M., Merillas, B., & Pontinha, A. D. R. (2024). Trends on Aerogel-Based Biosensors for Medical Applications: An Overview. International Journal of Molecular Sciences, 25(2), 1309, https://doi.org/10.3390/ijms25021309. Search in Google Scholar

Zou, F.; Budtova, T. Polysaccharide-Based Aerogels for Thermal Insulation and Superinsulation: An Overview. Carbohydr. Polym. 2021, 266, 118130, https://doi.org/10.1016/j.carbpol.2021.118130 Search in Google Scholar

Verma, A.; Thakur, S.; Goel, G.; Raj, J.; Gupta, V.K.; Roberts, D.; Thakur, V.K. Bio-Based Sustainable Aerogels: New Sensation in CO2 Capture. Curr. Res. Green Sustain. Chem. 2020, 3, 100027, https://doi.org/10.1016/j.crgsc.2020.100027. Search in Google Scholar

Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angew. Chem. 2009, 121, 6030–6034, https://doi.org/10.1002/anie.200901309 Search in Google Scholar

Wang, B., Zhang, H., Yang, X., Tian, T., & Bai, Z. (2024). Facile construction of multifunctional bio-aerogel for efficient separation of surfactant-stabilized oil-in-water emulsions and co-existing organic pollutant. Journal of Hazardous Materials, 461, 132434, https://doi.org/10.1016/j.jhazmat.2023.132434. Search in Google Scholar

Zhou, S., Liu, P., Wang, M., Zhao, H., Yang, J., & Xu, F. (2016). Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustainable Chemistry & Engineering, 4(12), 6409-6416, https://doi.org/10.1021/acssuschemeng.6b01075 Search in Google Scholar

Mallepally, R. R., Bernard, I., Marin, M. A., Ward, K. R., & McHugh, M. A. (2013). Superabsorbent alginate aerogels. The Journal of Supercritical Fluids, 79, 202-208, https://doi.org/10.1016/j.supflu.2012.11.024. Search in Google Scholar

Gui, Y., Fei, Z., Zhao, S., Zhang, Z., Shao, H., Chen, J., & Yang, Z. (2023). High-strength and multifunctional honeycomb polyimide aerogel fabricated by a freeze casting-assisted extrusion printing and building blockassembly strategy for sound absorbing metamaterials. Additive Manufacturing, 77, 103799, https://doi.org/10.1016/j.addma.2023.103799. Search in Google Scholar

Yin, R., Cheng, H., Hong, C., & Zhang, X. (2017). Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties. Composites Part A: Applied Science and Manufacturing, 101, 500-510, https://doi.org/10.1016/j.compositesa.2017.07.012. Search in Google Scholar

Francisco García-Moreno: Commercial Applications of Metal Foams: Their Properties and Production. Materials 2016, 9(2), 85, https://doi.org/10.3390/ma9020085; Search in Google Scholar

Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer aerogels and foams: Chemistry, properties, and applications. Angewandte Chemie International Edition, 57(26), 7580-7608, https://doi.org/10.1002/anie.201709014. Search in Google Scholar

Chen, N., & Pan, Q. (2013). Versatile fabrication of ultralight magnetic foams and application for oil–water separation. ACS nano, 7(8), 6875-6883, https://doi.org/10.1021/nn4020533. Search in Google Scholar

Gautam, R., Bassi, A. S., & Yanful, E. K. (2007). A review of biodegradation of synthetic plastic and foams. Applied biochemistry and biotechnology, 141, 85-108, https://doi.org/10.1007/s12010-007-9212-6. Search in Google Scholar

Thiyagarajan, R., & Senthil Kumar, M. (2021). A review on closed cell metal matrix syntactic foams: a green initiative towards eco-sustainability. Materials and Manufacturing Processes, 36(12), 1333-1351, https://doi.org/10.1080/10426914.2021.1928696 Search in Google Scholar

Chen, X., & Li, Y. X. (2003). Porous metals: research advances and applications. Mater. Rev, 17(5), 5. Search in Google Scholar

Ashby, M. F. (2006). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15-30, https://doi.org/10.1098/rsta.2005.1678. Search in Google Scholar

Kulshreshtha, A., & Dhakad, S. K. (2020). Preparation of metal foam by different methods: A review. Materials Today: Proceedings, 26, 1784-1790, https://doi.org/10.1016/j.matpr.2020.02.375. Search in Google Scholar

Sutygina, A., Betke, U., Hasemann, G., & Scheffler, M. (2020, July). Manufacturing of open-cell metal foams by the sponge replication technique. In IOP Conference Series: Materials Science and Engineering (Vol. 882, No. 1, p. 012022). IOP Publishing, https://doi.org/10.1088/1757-899x/882/1/012022. Search in Google Scholar

Hassan, A., & Alnaser, I. A. (2024). A Review of Different Manufacturing Methods of Metallic Foams. ACS omega, 9(6), 6280-6295, doi: 10.1021/acsomega.3c08613. Search in Google Scholar

Guner, A.; Arikan, M.M.; Nebioğlu, M. New Approaches to Aluminum Integral Foam Production with Casting Methods. Metals 2015, 5, 1553–1565, https://doi.org/10.3390/met5031553 Search in Google Scholar

Badiche, X.; Forest, S.; Guibert, T.; Bienvenu, Y.; Bartout, J.D.; Ienny, P.; Croset, M.; Bernet, H. Mechanical properties and non-homogeneous deformation of open-cell nickel foams: Application of the mechanics of cellular solids and of porous materials. Mater. Sci. Eng. A 2000, 289, 276–288, https://doi.org/10.1016/S0921-5093(00)00898-4 Search in Google Scholar

Miyoshi, T.; Itoh, M.; Akiyama, S.; Kitahara, A. ALPORAS Aluminum Foam: Production Process, Properties, and Applications. Adv. Eng. Mater. 2000, 2, 179–183, https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<179::AID-ADEM179>3.0.CO;2-G. Search in Google Scholar

Jiang, B., Yang, X., Niu, W., He, C., Shi, C., & Zhao, N. (2016). Ultralight Co/Ag composite foams: synthesis, morphology and compressive property. Scripta Materialia, 117, 68-72. Search in Google Scholar

Emmel, M., & Aneziris, C. G. (2012). Development of novel carbon bonded filter compositions for steel melt filtration. Ceramics International, 38(6), 5165-5173, https://doi.org/10.1016/j.ceramint.2012.03.022 Search in Google Scholar

Huo, W., Zhang, X., Chen, Y., Hu, Z., Wang, D., & Yang, J. (2019). Ultralight and high-strength bulk alumina/zirconia composite ceramic foams through direct foaming method. Ceramics International, 45(1), 1464-1467, https://doi.org/10.1016/j.ceramint.2018.09.095 Search in Google Scholar

Chen Z.P., Ren W.C., Gao L.B., Liu B.L., Pei S.F., Cheng H.M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011;10:424–428, https://doi.org/10.1038/nmat3001. Search in Google Scholar

Gui, X., Wei, J., Wang, K., Cao, A., Zhu, H., Jia, Y., ... & Wu, D. (2010). Carbon nanotube sponges. Advanced materials, 22(5), 617-621 https://doi.org/10.1002/adma.200902986 Search in Google Scholar

Su, M., Pan, Y., Zheng, G., Liu, C., Shen, C., & Liu, X. (2021). An ultra-light, superhydrophobic and thermal insulation ultra-high molecular weight polyethylene foam. Polymer, 218, 123528, https://doi.org/10.1016/j.polymer.2021.123528. Search in Google Scholar

Buzzi, O., Fityus, S., Sasaki, Y., & Sloan, S. (2008). Structure and properties of expanding polyurethane foam in the context of foundation remediation in expansive soil. Mechanics of Materials, 40(12), 1012-1021, https://doi.org/10.1016/j.mechmat.2008.07.002. Search in Google Scholar

Nandwana, V., Ribet, S. M., Reis, R. D., Kuang, Y., More, Y., & Dravid, V. P. (2020). OHM sponge: A versatile, efficient, and ecofriendly environmental remediation platform. Industrial & Engineering Chemistry Research, 59(23), 10945-10954, https://doi.org/10.1021/acs.iecr.0c01493. Search in Google Scholar

Choi, S. J., Kwon, T. H., Im, H., Moon, D. I., Baek, D. J., Seol, M. L., ... & Choi, Y. K. (2011). A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS applied materials & interfaces, 3(12), 4552-4556, https://doi.org/10.1021/am201352w. Search in Google Scholar

Ubertalli, G., & Ferraris, S. (2020). Al-based metal foams (AMF) as permanent cores in casting: State-of-the-art and future perspectives. Metals, 10(12), 1592, https://doi.org/10.3390/met10121592. Search in Google Scholar

Song, J., Li, L., Kong, S., Yu, B., Wan, Y., Zhou, Y., ... & Long, W. (2021). Lightweight and low thermal conducted face-centered-cubic cementitious lattice materials (FCLMs). Composite Structures, 263, 113536. https://daily.jstor.org/microlattice-worlds-lightest-metal/ Search in Google Scholar

Doty, R. E., Kolodziejska, J. A., & Jacobsen, A. J. (2012). Hierarchical polymer microlattice structures. Advanced Engineering Materials, 14(7), 503-507, https://doi.org/10.1002/adem.201200007. Search in Google Scholar

Yang, F., Zhao, S., Chen, G., Li, K., Fei, Z., Mummery, P., & Yang, Z. (2024). High-strength, multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure. Advanced Powder Materials, 3(1), 100153, https://doi.org/10.1016/j.apmate.2023.100153. Search in Google Scholar

Wenwang, W., & Re, X. (2022). Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties. 力学进展, 52(3), 673-718, doi: 10.6052/1000-0992-22-002 Search in Google Scholar

Anna Bonanomi, New ultralight materials for future aerospace vehicles, https://www.powertransmissionworld.com/new-ultralightmaterials-for-future-aerospace-vehicles/ Search in Google Scholar

Rashed, M. G., Ashraf, M., Mines, R. A. W., & Hazell, P. J. (2016). Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials & Design, 95, 518-533, https://doi.org/10.1016/j.matdes.2016.01.146. Search in Google Scholar

Meza, L. R., Das, S., & Greer, J. R. (2014). Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 345(6202), 1322-1326, DOI: 10.1126/science.1255908 Search in Google Scholar

Zheng, X., Lee, H., Weisgraber, T. H., Shusteff, M., DeOtte, J., Duoss, E. B., ... & Spadaccini, C. M. (2014). Ultralight, ultrastiff mechanical metamaterials. Science, 344(6190), 1373-1377, DOI: 10.1126/science.1252291. Search in Google Scholar