This work is licensed under the Creative Commons Attribution 4.0 International License.
Alhalaili, B., Popescu, I. N., Rusanescu, C. O., & Vidu, R. (2022). Microfluidic devices and microfluidics-integrated electrochemical and optical (Bio) Sensors for pollution analysis: a review. Sustainability, 14(19), 12844, https://doi.org/10.3390/su141912844.Search in Google Scholar
Thienel, K. C., Haller, T., & Beuntner, N. (2020). Lightweight concrete—From basics to innovations. Materials, 13(5), 1120, https://doi.org/10.3390/ma13051120Search in Google Scholar
Sun, G., Chen, D., Zhu, G., & Li, Q. (2022). Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Structures, 172, 108760. https://doi.org/10.1016/j.tws.2021.108760Search in Google Scholar
Jiang, B., He, C., Zhao, N., Nash, P., Shi, C., & Wang, Z. (2015). Ultralight metal foams. Scientific reports, 5(1), 13825. DOI: 10.1038/srep13825Search in Google Scholar
Sun, H., Xu, Z., & Gao, C. (2013). Multifunctional, ultraflyweight, synergistically assembled carbon aerogels. Advanced materials, 25(18), 2554-2560. DOI: 10.1002/adma.201204576Search in Google Scholar
Du, Q. F., & Huai, X. G. (2020, August). Research on multifunctional characteristics and application of ultralight porous metal materials based on structured. In Materials Science Forum (Vol. 1001, pp. 67-72). Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/MSF.1001.67Search in Google Scholar
He, H., Wei, X., Yang, B., Liu, H., Sun, M., Li, Y., & Xu, L. (2022). Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers. Nature Communications, 13(1), 4242. https://doi.org/10.1038/s41467-022-31957-2Search in Google Scholar
Chen, J., & Zhang, D. (2023). Multifunctional properties and applications of ultra-light porous metal materials. In MATEC Web of Conferences (Vol. 380, p. 01026). EDP Sciences. https://doi.org/10.1051/matecconf/202338001026Search in Google Scholar
Huang, Y., & Wang, X. (2023). Challenges and Trends for Multifunctional Materials. Journal of Building Material Science, 5(1), 17-19. https://doi.org/10.30564/jbms.v5i1.5521Search in Google Scholar
Lendlein, A., Trask, R.S., 2018. Multifunctional materials: Concepts, function-structure relationships, knowledgebased design, translational materials research. Multifunctional Materials. 1, 010201, DOI 10.1088/2399-7532/aada7bSearch in Google Scholar
Costa, C. M., Costa, P., & Lanceros-Mendez, S. (2021). Overview on lightweight, multifunctional materials. In Advanced Lightweight Multifunctional Materials (pp. 1-24). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818501-8.00002-0Search in Google Scholar
Gao, Y., Zhou, Y., Yang, Q., Guo, L., & Jiang, L. (2015). Ultralight materials. Progress in Chemistry, 27(12), 1714, https://doi.org/10.7536/PC150634.Search in Google Scholar
Zou, J., Liu, J., Karakoti, A. S., Kumar, A., Joung, D., Li, Q., ... & Zhai, L. (2010). Ultralight multiwalled carbon nanotube aerogel. ACS nano, 4(12), 7293-7302, https://doi.org/10.1021/nn102246a.Search in Google Scholar
Chen, Y., Yang, Y., Xiong, Y., Zhang, L., Xu, W., Duan, G., ... & Zhang, K. (2021). Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today, 38, 101204. https://doi.org/10.1016/j.nantod.2021.101204Search in Google Scholar
Akhter, F., Soomro, S. A., & Inglezakis, V. J. (2021). Silica aerogels; a review of synthesis, applications and fabrication of hybrid composites. Journal of Porous Materials, 28(5), 1387-1400, https://doi.org/10.1007/s10934-021-01091-3.Search in Google Scholar
Tappan, B. C., Huynh, M. H., Hiskey, M. A., Chavez, D. E., Luther, E. P., Mang, J. T., & Son, S. F. (2006). Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. Journal of the American Chemical Society, 128(20), 6589-6594. https://doi.org/10.1021/ja056550kSearch in Google Scholar
Fujii, S., Ryan, A. J., & Armes, S. P. (2006). Long-range structural order, moiré patterns, and iridescence in latexstabilized foams. Journal of the American Chemical Society, 128(24), 7882-7886, https://doi.org/10.1021/ja060640n.Search in Google Scholar
Wu, G., Xie, P., Yang, H., Dang, K., Xu, Y., Sain, M., ... & Yang, W. (2021). A review of thermoplastic polymer foams for functional applications. Journal of Materials Science, 56, 11579-11604, https://doi.org/10.1007/s10853-021-06034-6.Search in Google Scholar
Mi, H., Yang, J., Su, Z., Wang, T., Li, Z., Huo, W., & Qu, Y. (2017). Preparation of ultra-light ceramic foams from waste glass and fly ash. Advances in Applied Ceramics, 116(7), 400-408. doi:10.1080/17436753.2017.1342394Search in Google Scholar
Yin, J., Li, X., Zhou, J., & Guo, W. (2013). Synergistically three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano letters, 13(7), 3232-3236. https://doi.org/10.1021/nl401308vSearch in Google Scholar
Cui, Z., Luob, X., Xiao, S., Luo, X., Liu, Y., Liu, M., ... & Guo, H. (2023). Effect of sintering temperature on properties of lightweightporous ceramics prepared by foam impregnation method. Journal of Ceramic Processing Research, 24(5), 835-840, DOI : 10.36410/jcpr.2023.24.5.835.Search in Google Scholar
Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorensen, A. E., Lian, J., Greer, J. R., ... & Carter, W. B. (2011). Ultralight metallic microlattices. Science, 334(6058), 962-965, DOI: 10.1126/science.1211649.Search in Google Scholar
Xiong, J., Mines, R., Ghosh, R., Vaziri, A., Ma, L., Ohrndorf, A., ... & Wu, L. (2015). Advanced micro-lattice materials. Advanced Engineering Materials, 17(9), 1253-1264, https://doi.org/10.1002/adem.201400471Search in Google Scholar
Du, R., & Eychmüller, A. (2023). Metal-Based Aerogels and Porous Composites as Efficient Catalysts: Synthesis and Catalytic Performance. Catalysts, 13(11), 1451, https://doi.org/10.3390/catal13111451.Search in Google Scholar
Yeo, S. J., Oh, M. J., & Yoo, P. J. (2019). Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Advanced Materials, 31(34), 1803670. https://doi.org/10.1002/adma.201803670Search in Google Scholar
Zhang, X., Wang, Y., Ding, B., & Li, X. (2020). Design, fabrication, and mechanics of 3D micro- /nanolattices. Small, 16(15), 1902842. https://doi.org/10.1002/smll.201902842Search in Google Scholar
Soorbaghi, F. P., Isanejad, M., Salatin, S., Ghorbani, M., Jafari, S., & Derakhshankhah, H. (2019). Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomedicine & Pharmacotherapy, 111, 964-975, https://doi.org/10.1016/j.biopha.2019.01.014.Search in Google Scholar
Karamikamkar, S., Naguib, H. E., & Park, C. B. (2020). Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Advances in colloid and interface science, 276, 102101, https://doi.org/10.1016/j.cis.2020.102101.Search in Google Scholar
Maleki, H., Durães, L., García-González, C. A., Del Gaudio, P., Portugal, A., & Mahmoudi, M. (2016). Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in colloid and interface science, 236, 1-27. https://doi.org/10.1016/j.cis.2016.05.011Search in Google Scholar
James, A., & Yadav, D. (2022). Bioaerogels, the emerging technology for wastewater treatment: A comprehensive review on synthesis, properties and applications. Environmental Research, 212, 113222, https://doi.org/10.1016/j.envres.2022.113222.Search in Google Scholar
Bhagat, S.D., Rao, A.V., 2006. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process, Applied Surface Science 252, p. 4289, https://doi.org/10.1016/j.apsusc.2005.07.006.Search in Google Scholar
Błaszczyński, T., Ślosarczyk, A., & Morawski, M. (2013). Synthesis of silica aerogel by supercritical drying method. Procedia Engineering, 57, 200-206, DOI: 10.1016/j.proeng.2013.04.028Search in Google Scholar
Kocon, L., Despetis, F., & Phalippou, J. (1998). Ultralow density silica aerogels by alcohol supercritical drying. Journal of Non-Crystalline Solids, 225, 96-100, https://doi.org/10.1016/S0022-3093(98)00322-6Search in Google Scholar
Dorcheh, A. S., & Abbasi, M. H. (2008). Silica aerogel; synthesis, properties and characterization. Journal of materials processing technology, 199(1-3), 10-26, https://doi.org/10.1016/j.jmatprotec.2007.10.060.Search in Google Scholar
Li, K., He, S., Du, C., Guo, S., & Huang, Y. (2024). Ultra flexible silica aerogel with excellent mechanical properties for durable oil-water separation. Journal of Environmental Chemical Engineering, 12(5), 113752.Search in Google Scholar
Sun, H., Xu, Z., & Gao, C. (2013). Multifunctional, ultraflyweight, synergistically assembled carbon aerogels. Advanced materials, 25(18), 2554-2560. https://doi.org/10.1002/adma.201204576Search in Google Scholar
Li, B., Tian, H., Li, L., Liu, W., Liu, J., Zeng, Z., & Wu, N. (2024). Graphene-Assisted Assembly of Electrically and Magnetically Conductive Ceramic Nanofibrous Aerogels Enable Multifunctionality. Adv. Funct. Mater, 2314653, https://doi.org/10.1002/adfm.202314653.Search in Google Scholar
Li, J., Li, J., Meng, H., Xie, S., Zhang, B., Li, L., ... & Yu, M. (2014). Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem A, 2(9), 2934-2941, https://doi.org/10.1039/C3TA14725HSearch in Google Scholar
Qian, Y., Ismail, I. M., & Stein, A. (2014). Ultralight, highsurface- area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon, 68, 221-231, https://doi.org/10.1016/j.carbon.2013.10.082Search in Google Scholar
Kistler, S. S. (1931). Coherent expanded aerogels and jellies. Nature, 127(3211), 741-741, https://doi.org/10.1038/127741a0.Search in Google Scholar
Pornea, A. G. M., Puguan, J. M. C., Ruello, J. L. A., & Kim, H. (2022). Multifunctional dual-pore network aerogel composite material for broadband sound absorption, thermal insulation, and fire repellent applications. ACS Applied Polymer Materials, 4(4), 2880-2895. https://doi.org/10.1021/acsapm.2c00139Search in Google Scholar
Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277, https://doi.org/10.1021/bm700972kSearch in Google Scholar
Effraimopoulou, E., Jaxel, J., Budtova, T., & Rigacci, A. (2024). Hydrophobic Modification of Pectin Aerogels via Chemical Vapor Deposition. Polymers, 16(12), 1628. DOI 10.3390/polym16121628Search in Google Scholar
Nita, L. E., Ghilan, A., Rusu, A. G., Neamtu, I., & Chiriac, A. P. (2020). New trends in bio-based aerogels. Pharmaceutics, 12(5), 449, https://doi.org/10.3390/pharmaceutics12050449Search in Google Scholar
Mecklenburg, M., Schuchardt, A., Mishra, Y. K., Kaps, S., Adelung, R., Lotnyk, A., ... & Schulte, K. (2012). Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Advanced Materials, 24(26), 3486-3490. https://doi.org/10.1002/adma.201200491Search in Google Scholar
Jiang, F., & Hsieh, Y. L. (2014). Super water absorbing and shape memory nanocellulose aerogels from TEMPOoxidized cellulose nanofibrils via cyclic freezing– thawing. Journal of Materials Chemistry A, 2(2), 350-359, https://doi.org/10.1039/C3TA13629ASearch in Google Scholar
Jiang, X., Du, R., Hübner, R., Hu, Y., & Eychmüller, A. (2021). A roadmap for 3D metal aerogels: materials design and application attempts. Matter, 4(1), 54-94, https://doi.org/10.1016/j.matt.2020.10.001Search in Google Scholar
Pan, W.; Liang, C.; Sui, Y.; Wang, J.; Liu, P.; Zou, P.; Guo, Z.; Wang, F.; Ren, X.; Yang, C. A Highly Compressible, Elastic, and Air-Dryable Metallic Aerogels via Magnetic Field-Assisted Synthesis. Adv. Funct. Mater. 2022, 32, 2204166, https://doi.org/10.1002/adfm.202204166Search in Google Scholar
Sonu, S.S., Rai, N. & Chauhan, I. Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels. J Sol-Gel Sci Technol 105, 324– 336 (2023). https://doi.org/10.1007/s10971-022-06026-1Search in Google Scholar
Wen, D., Liu, W., Haubold, D., Zhu, C., Oschatz, M., Holzschuh, M., Wolf, A., Simon, F., Kaskel, S., and Eychmu¨ller, A. (2016). Gold aerogels: three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano 10, 2559–2567, https://doi.org/10.1021/acsnano.5b07505Search in Google Scholar
Selvasekaran, P., & Chidambaram, R. (2021). Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends in Food Science & Technology, 112, 455-470, https://doi.org/10.1016/j.tifs.2021.04.021.Search in Google Scholar
García-González, C. A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., & Alvarez-Lorenzo, C. (2021). Aerogels in drug delivery: From design to application. Journal of Controlled Release, 332, 40-63, https://doi.org/10.1016/j.jconrel.2021.02.012.Search in Google Scholar
Liu, Z., Zhang, S., He, B., Wang, S., & Kong, F. (2021). Synthesis of cellulose aerogels as promising carriers for drug delivery: a review. Cellulose, 28, 2697-2714, https://doi.org/10.1007/s10570-021-03734-9.Search in Google Scholar
Liu, H., Xing, F., Yu, P., Zhe, M., Shakya, S., Liu, M., ... & Ritz, U. (2024). Multifunctional aerogel: A unique and advanced biomaterial for tissue regeneration and repair. Materials & Design, 243, 113091, https://doi.org/10.1016/j.matdes.2024.113091.Search in Google Scholar
Zhou, F., Feng, X., Yu, J., & Jiang, X. (2018). High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd (II) and Pb (II). Environmental Science and Pollution Research, 25, 15651-15661, https://doi.org/10.1007/s11356-018-1733-8.Search in Google Scholar
Almeida, C. M., Merillas, B., & Pontinha, A. D. R. (2024). Trends on Aerogel-Based Biosensors for Medical Applications: An Overview. International Journal of Molecular Sciences, 25(2), 1309, https://doi.org/10.3390/ijms25021309.Search in Google Scholar
Zou, F.; Budtova, T. Polysaccharide-Based Aerogels for Thermal Insulation and Superinsulation: An Overview. Carbohydr. Polym. 2021, 266, 118130, https://doi.org/10.1016/j.carbpol.2021.118130Search in Google Scholar
Verma, A.; Thakur, S.; Goel, G.; Raj, J.; Gupta, V.K.; Roberts, D.; Thakur, V.K. Bio-Based Sustainable Aerogels: New Sensation in CO2 Capture. Curr. Res. Green Sustain. Chem. 2020, 3, 100027, https://doi.org/10.1016/j.crgsc.2020.100027.Search in Google Scholar
Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angew. Chem. 2009, 121, 6030–6034, https://doi.org/10.1002/anie.200901309Search in Google Scholar
Wang, B., Zhang, H., Yang, X., Tian, T., & Bai, Z. (2024). Facile construction of multifunctional bio-aerogel for efficient separation of surfactant-stabilized oil-in-water emulsions and co-existing organic pollutant. Journal of Hazardous Materials, 461, 132434, https://doi.org/10.1016/j.jhazmat.2023.132434.Search in Google Scholar
Zhou, S., Liu, P., Wang, M., Zhao, H., Yang, J., & Xu, F. (2016). Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustainable Chemistry & Engineering, 4(12), 6409-6416, https://doi.org/10.1021/acssuschemeng.6b01075Search in Google Scholar
Mallepally, R. R., Bernard, I., Marin, M. A., Ward, K. R., & McHugh, M. A. (2013). Superabsorbent alginate aerogels. The Journal of Supercritical Fluids, 79, 202-208, https://doi.org/10.1016/j.supflu.2012.11.024.Search in Google Scholar
Gui, Y., Fei, Z., Zhao, S., Zhang, Z., Shao, H., Chen, J., & Yang, Z. (2023). High-strength and multifunctional honeycomb polyimide aerogel fabricated by a freeze casting-assisted extrusion printing and building blockassembly strategy for sound absorbing metamaterials. Additive Manufacturing, 77, 103799, https://doi.org/10.1016/j.addma.2023.103799.Search in Google Scholar
Yin, R., Cheng, H., Hong, C., & Zhang, X. (2017). Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties. Composites Part A: Applied Science and Manufacturing, 101, 500-510, https://doi.org/10.1016/j.compositesa.2017.07.012.Search in Google Scholar
Francisco García-Moreno: Commercial Applications of Metal Foams: Their Properties and Production. Materials 2016, 9(2), 85, https://doi.org/10.3390/ma9020085;Search in Google Scholar
Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer aerogels and foams: Chemistry, properties, and applications. Angewandte Chemie International Edition, 57(26), 7580-7608, https://doi.org/10.1002/anie.201709014.Search in Google Scholar
Chen, N., & Pan, Q. (2013). Versatile fabrication of ultralight magnetic foams and application for oil–water separation. ACS nano, 7(8), 6875-6883, https://doi.org/10.1021/nn4020533.Search in Google Scholar
Gautam, R., Bassi, A. S., & Yanful, E. K. (2007). A review of biodegradation of synthetic plastic and foams. Applied biochemistry and biotechnology, 141, 85-108, https://doi.org/10.1007/s12010-007-9212-6.Search in Google Scholar
Thiyagarajan, R., & Senthil Kumar, M. (2021). A review on closed cell metal matrix syntactic foams: a green initiative towards eco-sustainability. Materials and Manufacturing Processes, 36(12), 1333-1351, https://doi.org/10.1080/10426914.2021.1928696Search in Google Scholar
Chen, X., & Li, Y. X. (2003). Porous metals: research advances and applications. Mater. Rev, 17(5), 5.Search in Google Scholar
Ashby, M. F. (2006). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15-30, https://doi.org/10.1098/rsta.2005.1678.Search in Google Scholar
Kulshreshtha, A., & Dhakad, S. K. (2020). Preparation of metal foam by different methods: A review. Materials Today: Proceedings, 26, 1784-1790, https://doi.org/10.1016/j.matpr.2020.02.375.Search in Google Scholar
Sutygina, A., Betke, U., Hasemann, G., & Scheffler, M. (2020, July). Manufacturing of open-cell metal foams by the sponge replication technique. In IOP Conference Series: Materials Science and Engineering (Vol. 882, No. 1, p. 012022). IOP Publishing, https://doi.org/10.1088/1757-899x/882/1/012022.Search in Google Scholar
Hassan, A., & Alnaser, I. A. (2024). A Review of Different Manufacturing Methods of Metallic Foams. ACS omega, 9(6), 6280-6295, doi: 10.1021/acsomega.3c08613.Search in Google Scholar
Guner, A.; Arikan, M.M.; Nebioğlu, M. New Approaches to Aluminum Integral Foam Production with Casting Methods. Metals 2015, 5, 1553–1565, https://doi.org/10.3390/met5031553Search in Google Scholar
Badiche, X.; Forest, S.; Guibert, T.; Bienvenu, Y.; Bartout, J.D.; Ienny, P.; Croset, M.; Bernet, H. Mechanical properties and non-homogeneous deformation of open-cell nickel foams: Application of the mechanics of cellular solids and of porous materials. Mater. Sci. Eng. A 2000, 289, 276–288, https://doi.org/10.1016/S0921-5093(00)00898-4Search in Google Scholar
Miyoshi, T.; Itoh, M.; Akiyama, S.; Kitahara, A. ALPORAS Aluminum Foam: Production Process, Properties, and Applications. Adv. Eng. Mater. 2000, 2, 179–183, https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<179::AID-ADEM179>3.0.CO;2-G.Search in Google Scholar
Jiang, B., Yang, X., Niu, W., He, C., Shi, C., & Zhao, N. (2016). Ultralight Co/Ag composite foams: synthesis, morphology and compressive property. Scripta Materialia, 117, 68-72.Search in Google Scholar
Emmel, M., & Aneziris, C. G. (2012). Development of novel carbon bonded filter compositions for steel melt filtration. Ceramics International, 38(6), 5165-5173, https://doi.org/10.1016/j.ceramint.2012.03.022Search in Google Scholar
Huo, W., Zhang, X., Chen, Y., Hu, Z., Wang, D., & Yang, J. (2019). Ultralight and high-strength bulk alumina/zirconia composite ceramic foams through direct foaming method. Ceramics International, 45(1), 1464-1467, https://doi.org/10.1016/j.ceramint.2018.09.095Search in Google Scholar
Chen Z.P., Ren W.C., Gao L.B., Liu B.L., Pei S.F., Cheng H.M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011;10:424–428, https://doi.org/10.1038/nmat3001.Search in Google Scholar
Gui, X., Wei, J., Wang, K., Cao, A., Zhu, H., Jia, Y., ... & Wu, D. (2010). Carbon nanotube sponges. Advanced materials, 22(5), 617-621 https://doi.org/10.1002/adma.200902986Search in Google Scholar
Su, M., Pan, Y., Zheng, G., Liu, C., Shen, C., & Liu, X. (2021). An ultra-light, superhydrophobic and thermal insulation ultra-high molecular weight polyethylene foam. Polymer, 218, 123528, https://doi.org/10.1016/j.polymer.2021.123528.Search in Google Scholar
Buzzi, O., Fityus, S., Sasaki, Y., & Sloan, S. (2008). Structure and properties of expanding polyurethane foam in the context of foundation remediation in expansive soil. Mechanics of Materials, 40(12), 1012-1021, https://doi.org/10.1016/j.mechmat.2008.07.002.Search in Google Scholar
Nandwana, V., Ribet, S. M., Reis, R. D., Kuang, Y., More, Y., & Dravid, V. P. (2020). OHM sponge: A versatile, efficient, and ecofriendly environmental remediation platform. Industrial & Engineering Chemistry Research, 59(23), 10945-10954, https://doi.org/10.1021/acs.iecr.0c01493.Search in Google Scholar
Choi, S. J., Kwon, T. H., Im, H., Moon, D. I., Baek, D. J., Seol, M. L., ... & Choi, Y. K. (2011). A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS applied materials & interfaces, 3(12), 4552-4556, https://doi.org/10.1021/am201352w.Search in Google Scholar
Ubertalli, G., & Ferraris, S. (2020). Al-based metal foams (AMF) as permanent cores in casting: State-of-the-art and future perspectives. Metals, 10(12), 1592, https://doi.org/10.3390/met10121592.Search in Google Scholar
Song, J., Li, L., Kong, S., Yu, B., Wan, Y., Zhou, Y., ... & Long, W. (2021). Lightweight and low thermal conducted face-centered-cubic cementitious lattice materials (FCLMs). Composite Structures, 263, 113536. https://daily.jstor.org/microlattice-worlds-lightest-metal/Search in Google Scholar
Doty, R. E., Kolodziejska, J. A., & Jacobsen, A. J. (2012). Hierarchical polymer microlattice structures. Advanced Engineering Materials, 14(7), 503-507, https://doi.org/10.1002/adem.201200007.Search in Google Scholar
Yang, F., Zhao, S., Chen, G., Li, K., Fei, Z., Mummery, P., & Yang, Z. (2024). High-strength, multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure. Advanced Powder Materials, 3(1), 100153, https://doi.org/10.1016/j.apmate.2023.100153.Search in Google Scholar
Wenwang, W., & Re, X. (2022). Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties. 力学进展, 52(3), 673-718, doi: 10.6052/1000-0992-22-002Search in Google Scholar
Anna Bonanomi, New ultralight materials for future aerospace vehicles, https://www.powertransmissionworld.com/new-ultralightmaterials-for-future-aerospace-vehicles/Search in Google Scholar
Rashed, M. G., Ashraf, M., Mines, R. A. W., & Hazell, P. J. (2016). Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials & Design, 95, 518-533, https://doi.org/10.1016/j.matdes.2016.01.146.Search in Google Scholar
Meza, L. R., Das, S., & Greer, J. R. (2014). Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 345(6202), 1322-1326, DOI: 10.1126/science.1255908Search in Google Scholar
Zheng, X., Lee, H., Weisgraber, T. H., Shusteff, M., DeOtte, J., Duoss, E. B., ... & Spadaccini, C. M. (2014). Ultralight, ultrastiff mechanical metamaterials. Science, 344(6190), 1373-1377, DOI: 10.1126/science.1252291.Search in Google Scholar