Otwarty dostęp

PPAR𝛾 gene and atherosclerosis: Genetic polymorphisms, epigenetics and therapeutic implications


Zacytuj

Cai J-M, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid ath-erosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002; 106(11): 1368-1373.CaiJ-MHatsukamiTSFergusonMSSmallRPolissarNLYuanCClassification of human carotid ath-erosclerotic lesions with in vivo multicontrast magnetic resonance imagingCirculation2002106111368137310.1161/01.CIR.0000028591.44554.F912221054Search in Google Scholar

Atherosclerosis. National Heart, Lung, and Blood Institute (NHLBI). Department of Health and Human Services, Bethseda, MD, USA, 2018 (https://www.nhlbi.nih.gov/health-topics/atherosclrerosis).AtherosclerosisNational Heart, Lung, and Blood Institute (NHLBI). Department of Health and Human Services, Bethseda, MD, USA2018(https://www.nhlbi.nih.gov/health-topics/atherosclrerosis)Search in Google Scholar

Roy S. Atherosclerotic cardiovascular disease risk and evidence-based management of cholesterol. N Am J Med Sci. 2014; 6(5): 191-198.RoySAtherosclerotic cardiovascular disease risk and evidence-based management of cholesterolN Am J Med Sci20146519119810.4103/1947-2714.132916404905124926443Search in Google Scholar

Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ J. 2010; 40(1): 1-9.HongYMAtherosclerotic cardiovascular disease beginning in childhoodKorean Circ J20104011910.4070/kcj.2010.40.1.1281279120111646Search in Google Scholar

Ammirati E, Moroni F, Norata GD, Magnoni M, Camici PG. Markers of inflammation associated with plaque progression and instability in patients with carotid atherosclerosis. Mediators Inflamm. 2015; 2015: 18329.AmmiratiEMoroniFNorataGDMagnoniMCamiciPGMarkers of inflammation associated with plaque progression and instability in patients with carotid atherosclerosisMediators Inflamm201520151832910.1155/2015/718329441546925960621Search in Google Scholar

Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011; 473(7347): 317-325LibbyPRidkerPMHanssonGKProgress and challenges in translating the biology of atherosclerosisNature2011473734731732510.1038/nature1014621593864Search in Google Scholar

Ross R. Atherosclerosis – An inflammatory disease. N Engl J Med. 1999; 340(2): 115-126.RossRAtherosclerosis – An inflammatory diseaseN Engl J Med1999340211512610.1056/NEJM1999011434002079887164Search in Google Scholar

Kruszynska YT, Mukherjee R, Jow L, Dana S, Paterniti JR, Olefsky JM. Skeletal muscle peroxisome proliferator-activated receptor-γ expression in obesity and non-insulin-dependent diabetes mellitus. J Clin Invest. 1998; 101(3): 543-548.KruszynskaYTMukherjeeRJowLDanaSPaternitiJROlefskyJMSkeletal muscle peroxisome proliferator-activated receptor-γ expression in obesity and non-insulin-dependent diabetes mellitusJ Clin Invest1998101354354810.1172/JCI10765085969449686Search in Google Scholar

Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr Rev. 1999; 20(5): 649-688.DesvergneBWahliWPeroxisome proliferator-activated receptors: Nuclear control of metabolismEndocr Rev199920564968810.1210/edrv.20.5.038010529898Search in Google Scholar

Hong C, Tontonoz P. Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev. 2008; 18(5): 461-467.HongCTontonozPCoordination of inflammation and metabolism by PPAR and LXR nuclear receptorsCurr Opin Genet Dev200818546146710.1016/j.gde.2008.07.016264101418782619Search in Google Scholar

Li AC, Glass CK. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res. 2004; 45(12): 2161-2173.LiACGlassCKPPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosisJ Lipid Res200445122161217310.1194/jlr.R400010-JLR20015489539Search in Google Scholar

Yongsakulchai P, Settasatian C, Settasatian N, Komanasin N, Kukongwiriyapan U, Cote ML, et al. Association of combined genetic variations in PPARγ, PGC-1α, and LXRα with coronary artery disease and severity in Thai population. Atherosclerosis. 2016; 248: 140-148.YongsakulchaiPSettasatianCSettasatianNKomanasinNKukongwiriyapanUCoteMLAssociation of combined genetic variations in PPARγ, PGC-1α, and LXRα with coronary artery disease and severity in Thai populationAtherosclerosis201624814014810.1016/j.atherosclerosis.2016.03.00527016616Search in Google Scholar

Al-Shali KZ, House AA, Hanley AJGG, Khan HMRR, Harris SB, Zinman B, et al. Genetic variation in PPARG encoding peroxisome proliferator-activated receptor γ associated with carotid atherosclerosis. Stroke. 2004; 35(9): 2036-2040.Al-ShaliKZHouseAAHanleyAJGGKhanHMRRHarrisSBZinmanBGenetic variation in PPARG encoding peroxisome proliferator-activated receptor γ associated with carotid atherosclerosisStroke20043592036204010.1161/01.STR.0000138784.68159.a515284449Search in Google Scholar

Wang L, Zhao L, Cui H, Yan M, Yang L, Su X. Association between PPARγ2 Pro 12Ala polymorphism and myocardial infarction and obesity in Han Chinese in Hohhot, China. Genet Mol Res Mol Res. 2012; 11(113): 2929-2938.WangLZhaoLCuiHYanMYangLSuXAssociation between PPARγ2 Pro 12Ala polymorphism and myocardial infarction and obesity in Han Chinese in Hohhot, ChinaGenet Mol Res Mol Res2012111132929293810.4238/2012.May.18.1322653647Search in Google Scholar

Flavell DM, Jamshidi Y, Hawe E, Pineda Torra I, Taskinen M-R, Frick MH, et al. Peroxisome proliferator-activated receptor α gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease. Circulation. 2002; 105(12): 1440-1445.FlavellDMJamshidiYHaweEPinedaTorra ITaskinenM-RFrickMHPeroxisome proliferator-activated receptor α gene variants influence progression of coronary atherosclerosis and risk of coronary artery diseaseCirculation2002105121440144510.1161/01.CIR.0000012145.80593.25Search in Google Scholar

Li Y, Zhu J, Ding J. Association of the PPARγ2 Pro12Ala polymorphism with increased risk of cardiovascular diseases. Genet Mol Res. 2015; 14(144): 18662-18674.LiYZhuJDingJAssociation of the PPARγ2 Pro12Ala polymorphism with increased risk of cardiovascular diseasesGenet Mol Res201514144186621867410.4238/2015.December.28.1526782516Search in Google Scholar

Yan ZC, Zhu ZM, Shen CY, Zhao ZG, Ni YX, Zhong J, et al. Peroxisome proliferator-activated receptor γ C-161T polymorphism and carotid artery atherosclerosis in metabolic syndrome. Zhonghua Yi Xue Za Zhi. 2004; 84(7): 543-547.YanZCZhuZMShenCYZhaoZGNiYXZhongJPeroxisome proliferator-activated receptor γ C-161T polymorphism and carotid artery atherosclerosis in metabolic syndromeZhonghua Yi Xue Za Zhi2004847543547Search in Google Scholar

Wang P, Wang Q, Yin Y, Yang Z, Li W, Liang D, et al. Association between peroxisome proliferator-activated receptor γ gene polymorphisms and atherosclerotic diseases: A meta-analysis of case-control studies. J Atheroscler Thromb. 2015; 22(9): 912-925.WangPWangQYinYYangZLiWLiangDAssociation between peroxisome proliferator-activated receptor γ gene polymorphisms and atherosclerotic diseases: A meta-analysis of case-control studiesJ Atheroscler Thromb201522991292510.5551/jat.2613825832497Search in Google Scholar

Rhee EJ, Kwon CH, Lee WY, Kim SY, Jung CH, Kim BJ, et al. No Association of Pro12Ala polymorphism of PPAR-γ gene with coronary artery disease in Korean subjects. Circ J. 2007; 71(3): 338-342.RheeEJKwonCHLeeWYKimSYJungCHKimBJNo Association of Pro12Ala polymorphism of PPAR-γ gene with coronary artery disease in Korean subjectsCirc J200771333834210.1253/circj.71.33817322631Search in Google Scholar

Wan J, Xiong S, Chao S, Xiao J, Ma Y, Wang J, et al. PPARγ gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus. Cardiovasc Diabetol. 2010; 9(1): 13.WanJXiongSChaoSXiaoJMaYWangJPPARγ gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitusCardiovasc Diabetol2010911310.1186/1475-2840-9-13285985020334678Search in Google Scholar

Matouk CC, Marsden PA. Epigenetic regulation of vascular endothelial gene expression. Circ Res. 2008; 102(8): 873-887.MatoukCCMarsdenPAEpigenetic regulation of vascular endothelial gene expressionCirc Res2008102887388710.1161/CIRCRESAHA.107.17102518436802Search in Google Scholar

Yu J, Qiu Y, Yang J, Bian S, Chen G, Deng M, et al. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice. Sci Rep. 2016; 6(1): 30053.YuJQiuYYangJBianSChenGDengMDNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in miceSci Rep2016613005310.1038/srep30053498764327530451Search in Google Scholar

Miranda TB, Jones PA. DNA methylation: The nuts and bolts of repression. J Cell Physiol. 2007; 213(2): 384-390.MirandaTBJonesPADNA methylation: The nuts and bolts of repressionJ Cell Physiol2007213238439010.1002/jcp.21224Search in Google Scholar

Hiltunen MO, Turunen MP, Häkkinen TP, Rutanen J, Hedman M, Mäkinen K, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med. 2002; 7(1): 5-11.HiltunenMOTurunenMPHäkkinenTPRutanenJHedmanMMäkinenKDNA hypomethylation and methyltransferase expression in atherosclerotic lesionsVasc Med20027151110.1191/1358863x02vm418oaSearch in Google Scholar

Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res. 2011; 90(3): 421-429.ReddyMANatarajanREpigenetic mechanisms in diabetic vascular complicationsCardiovasc Res201190342142910.1093/cvr/cvr024Search in Google Scholar

Laukkanen MO, Mannermaa S, Hiltunen MO, Aittomäki, Jänne J, Ylä-Herttuala S, et al. Gene ec-sod local hypomethylation in atherosclerosis found in rabbit. Arter Thromb Vasc Biol. 1999; 19(9): 2171-2178.LaukkanenMOMannermaaSHiltunenMOAittomäkiJänne JYlä-HerttualaSGene ec-sod local hypomethylation in atherosclerosis found in rabbitArter Thromb Vasc Biol19991992171217810.1161/01.ATV.19.9.2171Search in Google Scholar

Lund G, Andersson L, Lauria M, Lindholm M, Fraga FM, Villar-Garea A, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004; 279(28): 29147-29154.LundGAnderssonLLauriaMLindholmMFragaFMVillar-GareaADNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein EJ Biol Chem200427928291472915410.1074/jbc.M403618200Search in Google Scholar

Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128(4): 693-705.KouzaridesTChromatin modifications and their functionCell2007128469370510.1016/j.cell.2007.02.005Search in Google Scholar

Clayton AL, Hazzalin CA, Mahadevan LC. Review enhanced histone acetylation and transcription: A dynamic perspective. Mol Cell. 2006; 23(4): 289-296.ClaytonALHazzalinCAMahadevanLCReview enhanced histone acetylation and transcription: A dynamic perspectiveMol Cell200623428929610.1016/j.molcel.2006.06.017Search in Google Scholar

Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008; 28(5): 812-819.DoranACMellerNMcNamaraCARole of smooth muscle cells in the initiation and early progression of atherosclerosisArterioscler Thromb Vasc Biol200828581281910.1161/ATVBAHA.107.159327Search in Google Scholar

Chawla A, Boisvert WA, Lee C-H, Laffitte BA, Barak Y, Joseph SB, et al. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001; 7(1): 161-171.ChawlaABoisvertWALeeC-HLaffitteBABarakYJosephSBA PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesisMol Cell20017116117110.1016/S1097-2765(01)00164-2Search in Google Scholar

Cao Q, Rong S, Repa JJ, St. Clair R, Parks JS, Mishra N. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol. 2014; 34(9): 1871-1879.CaoQRongSRepaJJSt ClairRParksJSMishraNHistone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol20143491871187910.1161/ATVBAHA.114.303393421708625035344Search in Google Scholar

Cao Y, Lu L, Liu M, Li X-C, Sun R-R, Zheng Y, et al. Impact of epigenetics in the management of cardiovascular disease: A review. Eur Rev Med Pharmacol Sci. 2014; 18(20): 3097-3104.CaoYLuLLiuMLiX-CSunR-RZhengYImpact of epigenetics in the management of cardiovascular disease: A reviewEur Rev Med Pharmacol Sci2014182030973104Search in Google Scholar

Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014; 9(1): 3-12.PeschanskyVJWahlestedtC.Non-coding RNAs as direct and indirect modulators of epigenetic regulationEpigenetics20149131210.4161/epi.27473392818324739571Search in Google Scholar

Toba H, Cortez D, Lindsey ML, Chilton RJ. Applications of miRNA technology for atherosclerosis. Curr Atheroscler Rep. 2014; 16(2): 386.TobaHCortezDLindseyMLChiltonRJApplications of miRNA technology for atherosclerosisCurr Atheroscler Rep201416238610.1007/s11883-013-0386-9436266424395388Search in Google Scholar

Zhao R, Feng J, He G. miR-613 Regulates cholesterol efflux by targeting LXRα and ABCA1 in PPARγ activated THP-1 macrophages. Biochem Biophys Res Commun. 2014; 448(3): 329-334.ZhaoRFengJHeGmiR-613 Regulates cholesterol efflux by targeting LXRα and ABCA1 in PPARγ activated THP-1 macrophagesBiochem Biophys Res Commun2014448332933410.1016/j.bbrc.2014.04.05224751522Search in Google Scholar

Raitoharju E, Lyytikäinen L-P, Levula M, Oksala N, Mennander A, Tarkka M, et al. miR-21, miR-210, miR-34a, And miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011; 219(1): 211-217.RaitoharjuELyytikäinenL-PLevulaMOksalaNMennanderATarkkaMmiR-21, miR-210, miR-34a, And miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular StudyAtherosclerosis2011219121121710.1016/j.atherosclerosis.2011.07.02021820659Search in Google Scholar

Ma L, Yang J, Runesha HB, Tanaka T, Ferrucci L, Bandinelli S, et al. Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham heart study data. BMC Med Genet. 2010; 11(1): 55.MaLYangJRuneshaHBTanakaTFerrucciLBandinelliSGenome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham heart study dataBMC Med Genet20101115510.1186/1471-2350-11-55286778620370913Search in Google Scholar

Caolo V, Schulten HM, Zhuang ZW, Murakami M, Wagenaar A, Verbruggen S, et al. Soluble jagged-1 inhibits neointima formation by attenuating notchherp2 signaling. Arterioscler Thromb Vasc Biol. 2011; 31(5): 1059-1065.CaoloVSchultenHMZhuangZWMurakamiMWagenaarAVerbruggenSSoluble jagged-1 inhibits neointima formation by attenuating notchherp2 signalingArterioscler Thromb Vasc Biol20113151059106510.1161/ATVBAHA.110.21793521330605Search in Google Scholar

Cipollone F, Felicioni L, Sarzani R, Ucchino S, Spigonardo F, Mandolini C, et al. A unique microRNA signature associated with plaque instability in humans. Stroke. 2011; 42(9): 2556-2563.CipolloneFFelicioniLSarzaniRUcchinoSSpigonardoFMandoliniCA unique microRNA signature associated with plaque instability in humansStroke20114292556256310.1161/STROKEAHA.110.59757521817153Search in Google Scholar

Gupta D, Jetton TL, Mortensen RM, Duan SZ, Peshavaria M, Leahy JL. In vivo and in vitro studies of a functional peroxisome proliferator-activated receptor γ response element in the mouse pdx-1 promoter. J Biol Chem. 2008; 283(47): 32462-32470.GuptaDJettonTLMortensenRMDuanSZPeshavariaMLeahyJLIn vivo and in vitro studies of a functional peroxisome proliferator-activated receptor γ response element in the mouse pdx-1 promoterJ Biol Chem200828347324623247010.1074/jbc.M801813200258332118718916Search in Google Scholar

Blaschke F, Caglayan E. Peroxisome proliferator-activated receptor γ agonists: Their role as vasoprotective agents in diabetes. Endocrinol Metab Clin North Am. 2006; 35(3): 561-574.BlaschkeFCaglayanEPeroxisome proliferator-activated receptor γ agonists: Their role as vasoprotective agents in diabetesEndocrinol Metab Clin North Am200635356157410.1016/j.ecl.2006.06.00116959586Search in Google Scholar

Minamikawa J, Tanaka S, Yamauchi M, Inoue D, Koshiyama H. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab. 1998; 83(5): 1818-1820.MinamikawaJTanakaSYamauchiMInoueDKoshiyamaHPotent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetesJ Clin Endocrinol Metab19988351818182010.1210/jcem.83.5.49329589700Search in Google Scholar

Takagi T, Yamamuro A, Tamita K, Yamabe K, Katayama M, Mizoguchi S, et al. Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: An intra-vascular ultrasound scanning study. Am Heart J. 2003; 146(2): 366.TakagiTYamamuroATamitaKYamabeKKatayamaMMizoguchiSPioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: An intra-vascular ultrasound scanning studyAm Heart J2003146236610.1016/S0002-8703(03)00146-7Search in Google Scholar

Ruiz-Narváez EA, Kraft P, Campos H. Ala12 variant of the peroxisome proliferator-activated receptor-γ gene (PPARG) is associated with higher polyunsaturated fat in adipose tissue and attenuates the protective effect of polyunsaturated fat intake on the risk of myocardial infarction. Am J Clin Nutr. 2007; (86): 1238-1242.Ruiz-NarváezEAKraftPCamposHAla12 variant of the peroxisome proliferator-activated receptor-γ gene (PPARG) is associated with higher polyunsaturated fat in adipose tissue and attenuates the protective effect of polyunsaturated fat intake on the risk of myocardial infarctionAm J Clin Nutr2007861238124210.1093/ajcn/86.4.123817921408Search in Google Scholar

Li J, Zhang S. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2. Biochem Biophys Res Commun. 2016; 476(4): 218-224.LiJZhangSmicroRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2Biochem Biophys Res Commun2016476421822410.1016/j.bbrc.2016.05.09627216461Search in Google Scholar

Chinetti G, Zawadski C, Fruchart J, Staels B. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARα, PPARγ, and LXR. Biochem Biophys Res Commun. 2004; 314(1): 151-158.ChinettiGZawadskiCFruchartJStaelsBExpression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARα, PPARγ, and LXRBiochem Biophys Res Commun2004314115115810.1016/j.bbrc.2003.12.05814715259Search in Google Scholar

eISSN:
1311-0160
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, other