Otwarty dostęp

Highly Similar Average Collateral Effect of Synonymous Mutations Across Alternative Reading Frames: A Potential Role In Evolvability


Zacytuj

1. Wichmann S, Ardern Z. Optimality in the standard genetic code is robust with respect to comparison code sets. Bio Systems. 2019 November;2019;185:104023. doi:10.10.1016/j.biosystems.2019.104023 Wichmann S Ardern Z . Optimality in the standard genetic code is robust with respect to comparison code sets . Bio Systems . 2019 November ; 2019 ; 185 : 104023 . doi: 10.1016/j.biosys-tems.2019.104023 Open DOISearch in Google Scholar

2. Barrell BG, Air GM, Hutchison CA 3rd. Overlapping genes in bacteriophage phiX174. Nature. 1976;264(5581):34-41. doi:10.1038/264034a0 Barrell BG Air GM Hutchison CA 3rd . Overlapping genes in bacteriophage phiX174 . Nature . 1976 ; 264 ( 5581 ) : 34 - 41 . doi: 10.1038/264034a0 Open DOISearch in Google Scholar

3. Firth AE, Brierley I. Non-canonical translation in RNA viruses. J Gen Virol. 2012;93(Pt 7):1385-1409. doi:10.1099/vir.0.042499-0 Firth AE Brierley I . Non-canonical translation in RNA viruses . J Gen Virol . 2012 ; 93 ( Pt 7 ) : 1385 - 1409 . doi: 10.1099/vir.0.042499-0 Open DOISearch in Google Scholar

4. Cassan E, Arigon-Chifolleau AM, Mesnard JM, Gross A, Gascuel O. Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic. Proc Natl Acad Sci USA. 2016;113(41):11537-11542. doi:10.1073/pnas.1605739113 Cassan E Arigon-Chifolleau AM Mesnard JM Gross A Gascuel O . Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic . Proc Natl Acad Sci USA . 2016 ; 113 ( 41 ) : 11537 - 11542 . doi: 10.1073/pnas.1605739113 Open DOISearch in Google Scholar

5. Affram Y, Zapata JC, Gholizadeh Z, Tolbert WD, Zhou W, Iglesias-Ussel MD, Pazgier M, Ray K, Latinovic OS, Romerio F. The HIV-1 antisense protein ASP is a transmembrane protein of the cell surface and an integral protein of the viral envelope. J Virol. 2019;93(21):e00574-19. doi:10.1128/JVI.00574-19 Affram Y Zapata JC Gholizadeh Z Tolbert WD Zhou W Iglesias-Ussel MD Pazgier M Ray K Latinovic OS Romerio F . The HIV-1 antisense protein ASP is a transmembrane protein of the cell surface and an integral protein of the viral envelope . J Virol . 2019 ; 93 ( 21 ) : e00574-19 . doi: 10.1128/JVI.00574-19 Open DOISearch in Google Scholar

6. Nelson CW, Ardern Z, Goldberg TL, Meng C, Kuo CH, Ludwig C, Kolokotronis SO, Wei X. Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic. Elife. 2020;9:e59633. doi:10.7554/eLife.59633 Nelson CW Ardern Z Goldberg TL Meng C Kuo CH Ludwig C Kolokotronis SO Wei X . Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic . Elife . 2020 ; 9 : e59633 . doi: 10.7554/eLife.59633 Open DOISearch in Google Scholar

7. Firth AE. A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a. J Gen Virol. 2020;101(10):1085-1089. doi:10.1099/jgv.0.001469 Firth AE . A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a . J Gen Virol . 2020 ; 101 ( 10 ) : 1085 - 1089 . doi: 10.1099/jgv.0.001469 Open DOISearch in Google Scholar

8. Kreitmeier M, Ardern Z, Abele M, Ludwig C, Scherer S, Neuhaus K. Spotlight on alternative frame coding: Two long overlapping genes in Pseudomonas aeruginosa are translated and under purifying selection. iScience. 2022;25(2):103844. doi:10.1016/j.isci.2022.103844 Kreitmeier M Ardern Z Abele M Ludwig C Scherer S Neuhaus K . Spotlight on alternative frame coding: Two long overlapping genes in Pseudomonas aeruginosa are translated and under purifying selection . iScience . 2022 ; 25 ( 2 ): 103844 . doi: 10.1016/j.isci.2022.103844 Open DOISearch in Google Scholar

9. Zehentner B, Ardern Z, Kreitmeier M, Scherer S, Neuhaus K. Evidence for numerous embedded antisense overlapping genes in diverse E. coli strains. bioRxiv. 2020. Available from: https://doi.org/10.1101/2020.11.18.388249 Zehentner B Ardern Z Kreitmeier M Scherer S Neuhaus K . Evidence for numerous embedded antisense overlapping genes in diverse E. coli strains . bioRxiv . 2020 . Available from: https://doi.org/ 10.1101/2020.11.18.388249 Open DOISearch in Google Scholar

10. Ardern Z, Neuhaus K, Scherer S. Are Antisense Proteins in Prokaryotes Functional?. Front Mol Biosci. 2020;7:187. doi:10.3389/fmolb.2020.00187 Ardern Z Neuhaus K Scherer S . Are Antisense Proteins in Prokaryotes Functional? . Front Mol Biosci . 2020 ; 7 : 187 . doi: 10.3389/fmolb.2020.00187 Open DOISearch in Google Scholar

11. Meydan S, Vázquez-Laslop N, Mankin Alexander S. Genes within genes in bacterial genomes. Microbiology Spectrum. 2018;6(4). Available from: https://doi.org/10.1128/microbiolspec.RWR-0020-2018 Meydan S Vázquez-Laslop N Mankin Alexander S . Genes within genes in bacterial genomes . Microbiology Spectrum . 2018 ; 6 ( 4 ). Available from: https://doi.org/ 10.1128/microbiolspec.RWR-0020-2018 Open DOISearch in Google Scholar

12. Hücker SM, Vanderhaeghen S, Abellan-Schneyder I, Scherer S, Neuhaus K. The novel anaerobiosis-responsive overlapping gene ano is overlapping antisense to the annotated gene ECs2385 of Escherichia coli O157:H7 Sakai. Front Microbiol. 2018;9:931. doi:10.3389/fmicb.2018.00931 Hücker SM Vanderhaeghen S Abellan-Schneyder I Scherer S Neuhaus K . The novel anaerobiosis-responsive overlapping gene ano is overlapping antisense to the annotated gene ECs2385 of Escherichia coli O157:H7 Sakai . Front Microbiol . 2018 ; 9 : 931 . doi: 10.3389/fmicb.2018.00931 Open DOISearch in Google Scholar

13. Vanderhaeghen S, Zehentner B, Scherer S, Neuhaus K, Ardern Z. The novel EHEC gene asa overlaps the TEGT transporter gene in antisense and is regulated by NaCl and growth phase. Sci Rep. 2018;8(1):17875. doi:10.1038/s41598-018-35756-y Vanderhaeghen S Zehentner B Scherer S Neuhaus K Ardern Z . The novel EHEC gene asa overlaps the TEGT transporter gene in antisense and is regulated by NaCl and growth phase . Sci Rep . 2018 ; 8 ( 1 ): 17875 . doi: 10.1038/s41598-018-35756-y Open DOISearch in Google Scholar

14. Gelsinger DR, Dallon E, Reddy R, Mohammad F, Buskirk AR, DiRuggiero J. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res. 2020;48(10):5201-5216. doi:10.1093/nar/gkaa304 Gelsinger DR Dallon E Reddy R Mohammad F Buskirk AR DiRuggiero J . Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution . Nucleic Acids Res . 2020 ; 48 ( 10 ) : 5201 - 5216 . doi: 10.1093/nar/gkaa304 Open DOISearch in Google Scholar

15. Loughran G, Zhdanov AV, Mikhaylova MS, Andreev DE. Unusually efficient CUG initiation of an overlapping reading frame in POLG mRNA yields novel protein POLGARF. 2020;117(40):24936-24946. Available from: https://doi.org/10.1073/pnas.2001433117 Loughran G Zhdanov AV Mikhaylova MS Andreev DE . Unusually efficient CUG initiation of an overlapping reading frame in POLG mRNA yields novel protein POLGARF . 2020 ; 117 ( 40 ) : 24936 - 24946 . Available from: https://doi.org/ 10.1073/pnas.2001433117 Open DOISearch in Google Scholar

16. Khan YA, Jungreis I, Wright JC, Mudge JM, Choudhary JS, Firth AE, Kellis M. Evidence for a novel overlapping coding sequence in POLG initiated at a CUG start codon. BMC Genet. 2020;21(1):25. doi:10.1186/s12863-020-0828-7 Khan YA Jungreis I Wright JC Mudge JM Choudhary JS Firth AE Kellis M . Evidence for a novel overlapping coding sequence in POLG initiated at a CUG start codon . BMC Genet . 2020 ; 21 ( 1 ): 25 . doi: 10.1186/s12863-020-0828-7 Open DOISearch in Google Scholar

17. Mudge JM, Ruiz-Orera J, Prensner JR, Brunet MA, Gonzalez JM, Magrane M, Martinez T, Schulz JF, Yang YT, Alba MM, et al. A community-driven roadmap to advance research on translated open reading frames detected by Ribo-Seq. bioRxiv. 2021. Available from: https://doi.org/10.1101/2021.06.10.447896 Mudge JM Ruiz-Orera J Prensner JR Brunet MA Gonzalez JM Magrane M Martinez T Schulz JF Yang YT Alba MM . A community-driven roadmap to advance research on translated open reading frames detected by Ribo-Seq . bioRxiv . 2021 . Available from: https://doi.org/ 10.1101/2021.06.10.447896 Open DOISearch in Google Scholar

18. Cao X, Khitun A, Luo Y, Na Z, Phoodokmai T, Sappakhaw K, Olatunji E, Uttamapinant C, Slavoff SA. Alt-RPL36 downregulates the PI3K-AKT-mTOR signaling pathway by interacting with TMEM24. Nat Commun. 2021;12(1):508. doi:10.1038/s41467-020-20841-6 Cao X Khitun A Luo Y Na Z Phoodokmai T Sappakhaw K Olatunji E Uttamapinant C Slavoff SA . Alt-RPL36 downregulates the PI3K-AKT-mTOR signaling pathway by interacting with TMEM24 . Nat Commun . 2021 ; 12 ( 1 ) : 508 . doi: 10.1038/s41467-020-20841-6 Open DOISearch in Google Scholar

19. Wright BW, Yi Z, Weissman JS, Chen J. The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol. 2022;32(3):243-258. doi:10.1016/j.tcb.2021.10.010 Wright BW Yi Z Weissman JS Chen J . The dark proteome: translation from noncanonical open reading frames . Trends Cell Biol . 2022 ; 32 ( 3 ) : 243 - 258 . doi: 10.1016/j.tcb.2021.10.010 Open DOISearch in Google Scholar

20. Szekely M. Triple overlapping genes. Nature. 1978;272(5653): 492. Szekely M . Triple overlapping genes . Nature . 1978 ; 272 ( 5653 ): 492 . Search in Google Scholar

21. Siegel AF, Fitch WM. Degeneracy when DNA codes for overlapping genes. Mathematical Biosciences. 1980;49(1):1-16. Available from: https://doi.org/10.1016/0025-5564(80)90107-8 Siegel AF Fitch WM . Degeneracy when DNA codes for overlapping genes . Mathematical Biosciences . 1980 ; 49 ( 1 ) : 1 - 16 . Available from: https://doi.org/ 10.1016/0025-5564(80)90107-8 Open DOISearch in Google Scholar

22. Smith TF, Waterman MS. Overlapping genes and information theory. J Theoret Biol. 1981;91(2):379-380. Smith TF Waterman MS . Overlapping genes and information theory . J Theoret Biol . 1981 ; 91 ( 2 ) : 379 - 380 . Search in Google Scholar

23. Yockey HP. Rebuttal of ‘overlapping genes and information theory.’ J Theoret Biol. 1981;91(2):381-382. Yockey HP . Rebuttal of ‘overlapping genes and information theory.’ J Theoret Biol . 1981 ; 91 ( 2 ) : 381 - 382 . Search in Google Scholar

24. Miyata T, Yasunaga T. Evolution of overlapping genes. Nature. 1978;272(5653):532-535. Miyata T Yasunaga T . Evolution of overlapping genes . Nature . 1978 ; 272 ( 5653 ) : 532 - 535 . Search in Google Scholar

25. Yockey HP. Do overlapping genes violate molecular biology and the theory of evolution? J Theoret Biol. 1979;80(1):21-26. Yockey HP . Do overlapping genes violate molecular biology and the theory of evolution? J Theoret Biol . 1979 ; 80 ( 1 ) : 21 - 26 . Search in Google Scholar

26. Kolata GB. Overlapping genes: more than anomalies? Science. 1977;196(4295):1187-1188. Kolata GB . Overlapping genes: more than anomalies? Science . 1977 ; 196 ( 4295 ) : 1187 - 1188 . Search in Google Scholar

27. Wright BW, Molloy MP, Jaschke PR. Overlapping genes in natural and engineered genomes. Nat Rev Genet. 2022;23(3): 154-168. doi:10.1038/s41576-021-00417-w Wright BW Molloy MP Jaschke PR . Overlapping genes in natural and engineered genomes . Nat Rev Genet . 2022 ; 23 ( 3 ): 154 - 168 . doi: 10.1038/s41576-021-00417-w Open DOISearch in Google Scholar

28. Brandes N, Linial M. Gene overlapping and size constraints in the viral world. Biol Direct. 2016 May;11:26. Brandes N Linial M . Gene overlapping and size constraints in the viral world . Biol Direct . 2016 May ; 11 : 26 . Search in Google Scholar

29. Vakirlis N, Carvunis AR, McLysaght A. Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes. Elife. 2020;9:e53500. doi:10.7554/eLife.53500 Vakirlis N Carvunis AR McLysaght A . Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes . Elife . 2020 ; 9 : e53500 . doi: 10.7554/eLife.53500 Open DOISearch in Google Scholar

30. Keese PK, Gibbs A. Origins of genes: “big bang” or continuous creation?. Proc Natl Acad Sci USA. 1992;89(20):9489-9493. doi:10.1073/pnas.89.20.9489 Keese PK Gibbs A . Origins of genes: “big bang” or continuous creation? . Proc Natl Acad Sci USA . 1992 ; 89 ( 20 ) : 9489 - 9493 . doi: 10.1073/pnas.89.20.9489 Open DOISearch in Google Scholar

31. Ohno S. Evolution by gene duplication. Berlin: Springer; 1970. Ohno S . Evolution by gene duplication . Berlin : Springer ; 1970 . Search in Google Scholar

32. Carter CW. Simultaneous codon usage, the origin of the proteome, and the emergence of de-novo proteins. Cur Opin Struct Biol. 2021;68:142-148. Carter CW . Simultaneous codon usage, the origin of the proteome, and the emergence of de-novo proteins . Cur Opin Struct Biol . 2021 ; 68 : 142 - 148 . Search in Google Scholar

33. Watson AK, Lopez P, Bapteste E. Hundreds of out-of-frame remodeled gene families in the escherichia coli pangenome. Mol Biol Evol. 2022;39(1):msab329. Available from: https://doi.org/10.1093/molbev/msab329 Watson AK Lopez P Bapteste E . Hundreds of out-of-frame remodeled gene families in the escherichia coli pangenome . Mol Biol Evol . 2022 ; 39 ( 1 ): msab329 . Available from: https://doi.org/ 10.1093/molbev/msab329 Open DOISearch in Google Scholar

34. Biba D, Klink G, Bazykin GA. Pairs of mutually compensatory frameshifting mutations contribute to protein evolution. Mol Biol Evol. 2022;39(3):msac031. Available from: https://doi.org/10.1093/molbev/msac031 Biba D Klink G Bazykin GA . Pairs of mutually compensatory frameshifting mutations contribute to protein evolution . Mol Biol Evol . 2022 ; 39 ( 3 ): msac031 . Available from: https://doi.org/ 10.1093/molbev/msac031 Open DOISearch in Google Scholar

35. Bartonek L, Braun D, Zagrovic B. Frameshifting preserves key physicochemical properties of proteins. Proc Natl Acad Sci USA. 2020;117(11):5907-5912. Bartonek L Braun D Zagrovic B . Frameshifting preserves key physicochemical properties of proteins . Proc Natl Acad Sci USA . 2020 ; 117 ( 11 ) : 5907 - 5912 . Search in Google Scholar

36. Xu H, Zhang J. On the origin of frameshift-robustness of the standard genetic code. Mol Biol Evol. 2021a;38(10):4301-4309. doi:10.1093/molbev/msab1642021a Xu H Zhang J . On the origin of frameshift-robustness of the standard genetic code . Mol Biol Evol . 2021a ; 38 ( 10 ) : 4301 - 4309 . doi: 10.1093/molbev/msab1642021a Open DOISearch in Google Scholar

37. Blalock JE, Smith EM. Hydropathic anti-complementarity of amino acids based on the genetic code. Biochem Biophys Res Comm. 1984;121(1):203-207. Blalock JE Smith EM . Hydropathic anti-complementarity of amino acids based on the genetic code . Biochem Biophys Res Comm . 1984 ; 121 ( 1 ): 203 - 207 . Search in Google Scholar

38. Zull JE, Smith SK. Is genetic code redundancy related to retention of structural information in both DNA strands? Trends Biochem Sci. 1990;15(7):257-261. Zull JE Smith SK . Is genetic code redundancy related to retention of structural information in both DNA strands? Trends Biochem Sci . 1990 ; 15 ( 7 ) : 257 - 261 . Search in Google Scholar

39. Konecny J, Eckert M, Schöniger M, Hofacker GL. Neutral adaptation of the genetic code to double-strand coding. J Mol Evol. 1993;36(5):407-416. Konecny J Eckert M Schöniger M Hofacker GL . Neutral adaptation of the genetic code to double-strand coding . J Mol Evol . 1993 ; 36 ( 5 ) : 407 - 416 . Search in Google Scholar

40. Blalock JE. Complementarity of peptides specified by ‘sense’ and ‘antisense’ strands of DNA. Trends Biotechnol. 1990;8(6): 140-144. Blalock JE . Complementarity of peptides specified by ‘sense’ and ‘antisense’ strands of DNA . Trends Biotechnol . 1990 ; 8 ( 6 ) : 140 - 144 . Search in Google Scholar

41. Willis S, Masel J. Gene birth contributes to structural disorder encoded by overlapping genes. genetics. 2018;210(1):303-313. doi:10.1534/genetics.118.301249 Willis S Masel J . Gene birth contributes to structural disorder encoded by overlapping genes . genetics . 2018 ; 210 ( 1 ) : 303 - 313 . doi: 10.1534/genetics.118.301249 Open DOISearch in Google Scholar

42. Wei X, Zhang J. A simple method for estimating the strength of natural selection on overlapping genes. Genome Biol Evol. 2015;7(10): 381-390. Available from: https://doi.org/10.1093/gbe/evu294 Wei X Zhang J . A simple method for estimating the strength of natural selection on overlapping genes . Genome Biol Evol . 2015 ; 7 ( 10 ): 381 - 390 . Available from: https://doi.org/ 10.1093/gbe/evu294 Open DOISearch in Google Scholar

43. Osawa S. Evolution of the genetic code. Oxford: Oxford University Press; 1995. Osawa S . Evolution of the genetic code . Oxford : Oxford University Press ; 1995 . Search in Google Scholar

44. Freeland SJ, Knight RD, Landweber LF, Hurst LD. Early fixation of an optimal genetic code. Mol Biol Evol. 2000;17(4):511-518. doi:10.1093/oxfordjournals.molbev.a026331 Freeland SJ Knight RD Landweber LF Hurst LD . Early fixation of an optimal genetic code . Mol Biol Evol . 2000 ; 17 ( 4 ) : 511 - 518 . doi: 10.1093/oxfordjournals.molbev.a026331 Open DOISearch in Google Scholar

45. Freeland SJ, Hurst LD. The genetic code is one in a million. J Mol Evol. 1998;47(3):238-248. Freeland SJ Hurst LD . The genetic code is one in a million . J Mol Evol . 1998 ; 47 ( 3 ) : 238 - 248 . Search in Google Scholar

46. Itzkovitz S, Alon U. The genetic code is nearly optimal for allowing additional information within protein-coding sequences. Genome Res. 2007;17(4):405-412. Itzkovitz S Alon U . The genetic code is nearly optimal for allowing additional information within protein-coding sequences . Genome Res . 2007 ; 17 ( 4 ) : 405 - 412 . Search in Google Scholar

47. Ilardo M, Meringer M, Freeland S, Rasulev B, Cleaves HJ 2nd. Extraordinarily adaptive properties of the genetically encoded amino acids. Sci Rep. 2015;5:9414. doi:10.1038/srep09414 Ilardo M Meringer M Freeland S Rasulev B Cleaves HJ 2nd . Extraordinarily adaptive properties of the genetically encoded amino acids . Sci Rep . 2015 ; 5 : 9414 . doi: 10.1038/srep09414 Open DOISearch in Google Scholar

48. Ilardo M, Bose R, Meringer M, Rasulev B, Grefenstette N, Stephenson J, Freeland S, Gillams RJ, Butch CJ, Cleaves HJ 3rd. Adaptive properties of the genetically encoded amino acid alphabet are inherited from its subsets. Sci Reports. 2019;9(12468). Available from: https://doi.org/10.1038/s41598-019-47574-x Ilardo M Bose R Meringer M Rasulev B Grefenstette N Stephenson J Freeland S Gillams RJ Butch CJ Cleaves HJ 3rd . Adaptive properties of the genetically encoded amino acid alphabet are inherited from its subsets . Sci Reports . 2019 ; 9 ( 12468 ). Available from: https://doi.org/ 10.1038/s41598-019-47574-x Open DOISearch in Google Scholar

49. Mayer-Bacon C, Freeland SJ. A broader context for understanding amino acid alphabet optimality. J Theo Biol. 2021 July;520:110661. Mayer-Bacon C Freeland SJ . A broader context for understanding amino acid alphabet optimality . J Theo Biol . 2021 July ; 520 : 110661 . Search in Google Scholar

50. Freeland SJ. The Darwinian genetic code: An adaptation for adapting? Genet Program Evolvable Mach. 2002;3(2):113-127. Available from: https://doi.org/10.1023/A:1015527808424 Freeland SJ . The Darwinian genetic code: An adaptation for adapting? Genet Program Evolvable Mach . 2002 ; 3 ( 2 ) : 113 - 127 . Available from: https://doi.org/ 10.1023/A:1015527808424 Open DOISearch in Google Scholar

51. Zhu W, Freeland SJ. The standard genetic code enhances adaptive evolution of proteins. J Theoret Biol. 2006;239(1):63-70. Zhu W Freeland SJ . The standard genetic code enhances adaptive evolution of proteins . J Theoret Biol . 2006 ; 239 ( 1 ) : 63 - 70 . Search in Google Scholar

52. Firnberg E, Ostermeier M. The genetic code constrains yet facilitates Darwinian evolution. Nucleic Acids Res. 2013;41(15): 7420-7428. Firnberg E Ostermeier M . The genetic code constrains yet facilitates Darwinian evolution . Nucleic Acids Res . 2013 ; 41 ( 15 ): 7420 - 7428 . Search in Google Scholar

53. Tripathi S, Deem MW. The standard genetic code facilitates exploration of the space of functional nucleotide sequences. J Mol Evol. 2018;86(6):325-339. Tripathi S Deem MW . The standard genetic code facilitates exploration of the space of functional nucleotide sequences . J Mol Evol . 2018 ; 86 ( 6 ) : 325 - 339 . Search in Google Scholar

54. Richter H, Engelbrecht A, editors. Recent advances in the theory and application of fitness landscapes. Berlin: Springer; 2014. Richter H Engelbrecht A , editors. Recent advances in the theory and application of fitness landscapes . Berlin : Springer ; 2014 . Search in Google Scholar

55. de Visser JA, Krug J. Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet. 2014;15(7):480-490. doi:10.1038/nrg3744 de Visser JA Krug J . Empirical fitness landscapes and the predictability of evolution . Nat Rev Genet . 2014 ; 15 ( 7 ) : 480 - 490 . doi: 10.1038/nrg3744 Open DOISearch in Google Scholar

56. Payne JL, Wagner A. The causes of evolvability and their evolution. Nat Rev Genet. 2019;20(1):24-38. Payne JL Wagner A . The causes of evolvability and their evolution . Nat Rev Genet . 2019 ; 20 ( 1 ) : 24 - 38 . Search in Google Scholar

57. Chen JZ, Fowler DM, Tokuriki N. Environmental selection and epistasis in an empirical phenotype-environment-fitness landscape. Nat Ecol Evol. 2022;6(4):427-438. doi:10.1038/s41559-022-01675-5 Chen JZ Fowler DM Tokuriki N . Environmental selection and epistasis in an empirical phenotype-environment-fitness landscape . Nat Ecol Evol . 2022 ; 6 ( 4 ) : 427 - 438 . doi: 10.1038/s41559-022-01675-5 Open DOISearch in Google Scholar

58. Tenaillon O. The utility of Fisher’s geometric model in evolutionary genetics. Annu Rev Ecol Evol Syst. 2014;45:179-201. doi:10.1146/annurev-ecolsys-120213-091846 Tenaillon O . The utility of Fisher’s geometric model in evolutionary genetics . Annu Rev Ecol Evol Syst . 2014 ; 45 : 179 - 201 . doi: 10.1146/annurev-ecolsys-120213-091846 Open DOISearch in Google Scholar

59. Fisher RA. The genetical theory of natural selection. Oxford: Clarendon Press; 1930. Available from: https://doi.org/10.5962/bhl.title.27468 Fisher RA . The genetical theory of natural selection . Oxford : Clarendon Press ; 1930 . Available from: https://doi.org/ 10.5962/bhl.title.27468 Open DOISearch in Google Scholar

60. Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC. On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:723-736. doi:10.1101/sqb.1966.031.01.093 Woese CR Dugre DH Dugre SA Kondo M Saxinger WC . On the fundamental nature and evolution of the genetic code . Cold Spring Harb Symp Quant Biol . 1966 ; 31 : 723 - 736 . doi: 10.1101/sqb.1966.031.01.093 Open DOISearch in Google Scholar

61. Buhrman H, van der Gulik PT, Kelk SM, Koolen WM, Stougie L. Some mathematical refinements concerning error minimization in the genetic code. IEEE/ACM Trans Comput Biol Bioinform. 2011;8(5):1358-1372. doi:10.1109/TCBB.2011.40 Buhrman H van der Gulik PT Kelk SM Koolen WM Stougie L . Some mathematical refinements concerning error minimization in the genetic code . IEEE/ACM Trans Comput Biol Bioinform . 2011 ; 8 ( 5 ) : 1358 - 1372 . doi: 10.1109/TCBB.2011.40 Open DOISearch in Google Scholar

62. Lèbre S, Gascuel O. The combinatorics of overlapping genes. J Theoret Biol. 2017 February;415:90-101. Lèbre S Gascuel O . The combinatorics of overlapping genes . J Theoret Biol . 2017 February ; 415 : 90 - 101 . Search in Google Scholar

63. Shenhav L, Zeevi D. Resource conservation manifests in the genetic code. Science. 2020;370(6517): 683–687. Shenhav L Zeevi D . Resource conservation manifests in the genetic code . Science . 2020 ; 370 ( 6517 ): 683 687 . Search in Google Scholar

64. Rozhoňová H, Payne JL. Little evidence the standard genetic code is optimized for resource conservation. Mol Biol Evol. 2021;38(11):5127-5133. Rozhoňová H Payne JL . Little evidence the standard genetic code is optimized for resource conservation . Mol Biol Evol . 2021 ; 38 ( 11 ) : 5127 - 5133 . Search in Google Scholar

65. Xu H, Zhang J. Is the genetic code optimized for resource conservation? Mol Biol Evol. 2021b;38(11):5122-5126. Xu H Zhang J . Is the genetic code optimized for resource conservation? Mol Biol Evol . 2021b ; 38 ( 11 ): 5122 - 5126 . Search in Google Scholar

66. Massey SE. A neutral origin for error minimization in the genetic code. J Mol Evol. 2008;67(5):510-516. Massey SE . A neutral origin for error minimization in the genetic code . J Mol Evol . 2008 ; 67 ( 5 ) : 510 - 516 . Search in Google Scholar

67. Massey SE. The neutral emergence of error minimized genetic codes superior to the standard genetic code. J Theoret Biol. 2016 November;408:237-242. Massey SE . The neutral emergence of error minimized genetic codes superior to the standard genetic code . J Theoret Biol . 2016 November ; 408 : 237 - 242 . Search in Google Scholar

68. Di Giulio M. A non-neutral origin for error minimization in the origin of the genetic code. J Mol Evol. 2018;86(9):593-597. Di Giulio M . A non-neutral origin for error minimization in the origin of the genetic code . J Mol Evol . 2018 ; 86 ( 9 ) : 593 - 597 . Search in Google Scholar

69. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324(5924):218-223. doi:10.1126/science.1168978 Ingolia NT Ghaemmaghami S Newman JR Weissman JS . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling . Science . 2009 ; 324 ( 5924 ) : 218 - 223 . doi: 10.1126/science.1168978 Open DOISearch in Google Scholar

70. Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, Tamir H, Achdout H, Stein D, Israeli O, et al. The coding capacity of SARS-CoV-2. Nature. 2021;589(7840):125-130. doi:10.1038/s41586-020-2739-1 Finkel Y Mizrahi O Nachshon A Weingarten-Gabbay S Morgenstern D Yahalom-Ronen Y Tamir H Achdout H Stein D Israeli O . The coding capacity of SARS-CoV-2 . Nature . 2021 ; 589 ( 7840 ): 125 - 130 . doi: 10.1038/s41586-020-2739-1 Open DOISearch in Google Scholar

71. Firth AE. Mapping overlapping functional elements embedded within the protein-coding regions of RNA viruses. Nucleic Acids Res. 2014;42(20):12425-12439. Firth AE . Mapping overlapping functional elements embedded within the protein-coding regions of RNA viruses . Nucleic Acids Res . 2014 ; 42 ( 20 ) : 12425 - 12439 . Search in Google Scholar

72. Sealfon RS, Lin MF, Jungreis I, Wolf MY, Kellis M, Sabeti PC. FRESCo: finding regions of excess synonymous constraint in diverse viruses. Genome Biol. 2015;16(1):38. doi:10.1186/s13059-015-0603-7 Sealfon RS Lin MF Jungreis I Wolf MY Kellis M Sabeti PC . FRESCo: finding regions of excess synonymous constraint in diverse viruses . Genome Biol . 2015 ; 16 ( 1 ) : 38 . doi: 10.1186/s13059-015-0603-7 Open DOISearch in Google Scholar

73. Schlub TE, Buchmann JP, Holmes EC. A simple method to detect candidate overlapping genes in viruses using single genome sequences. Mol Biol Evol. 2018;35(10):2572-2581. Schlub TE Buchmann JP Holmes EC . A simple method to detect candidate overlapping genes in viruses using single genome sequences . Mol Biol Evol . 2018 ; 35 ( 10 ) : 2572 - 2581 . Search in Google Scholar

74. Nelson CW, Ardern Z, Wei X. OLGenie: Estimating natural selection to predict functional overlapping genes. Mol Biol Evol. 2020;37(8):2440-2449. doi:10.1093/molbev/msaa087 Nelson CW Ardern Z Wei X . OLGenie: Estimating natural selection to predict functional overlapping genes . Mol Biol Evol . 2020 ; 37 ( 8 ) : 2440 - 2449 . doi: 10.1093/molbev/msaa087 Open DOISearch in Google Scholar

75. Louis AA. Contingency, convergence and hyper-astronomical numbers in biological evolution. Stud Hist Philos Biol Biomed Sci. 2016;58:107-116. doi:10.1016/j.shpsc.2015.12.014 Louis AA . Contingency, convergence and hyper-astronomical numbers in biological evolution . Stud Hist Philos Biol Biomed Sci . 2016 ; 58 : 107 - 116 . doi: 10.1016/j.shpsc.2015.12.014 Open DOISearch in Google Scholar

76. Keefe AD, Szostak JW. Functional proteins from a random-sequence library. Nature. 2001;410(6829):715-718. Keefe AD Szostak JW . Functional proteins from a random-sequence library . Nature . 2001 ; 410 ( 6829 ) : 715 - 718 . Search in Google Scholar

77. Çakir U, Gabed N, Brunet M, Roucou X, Kryvoruchko I. Mosaic translation hypothesis: Chimeric polypeptides produced via multiple ribosomal frameshifting as a basis for adaptability [published online ahead of print, 2021 Nov 7]. FEBS J. 2021;10.1111/febs.16269. doi:10.1111/febs.16269 Çakir U Gabed N Brunet M Roucou X Kryvoruchko I . Mosaic translation hypothesis: Chimeric polypeptides produced via multiple ribosomal frameshifting as a basis for adaptability [published online ahead of print, 2021 Nov 7] . FEBS J . 2021 ;10.1111/febs.16269. doi: 10.1111/febs.16269 Open DOISearch in Google Scholar

78. Kosinski LJ, Masel J. Readthrough errors purge deleterious cryptic sequences, facilitating the birth of coding sequences. Mol Biol Evol. 2020;37(6):1761-1774. Kosinski LJ Masel J . Readthrough errors purge deleterious cryptic sequences, facilitating the birth of coding sequences . Mol Biol Evol . 2020 ; 37 ( 6 ) : 1761 - 1774 . Search in Google Scholar

79. Fernandes JD, Faust TB, Strauli NB, Smith C, Crosby DC, Nakamura RL, Hernandez RD, Frankel AD. Functional segregation of overlapping genes in HIV. Cell. 2016;167(7):1762-1773. e12. doi:10.1016/j.cell.2016.11.031 Fernandes JD Faust TB Strauli NB Smith C Crosby DC Nakamura RL Hernandez RD Frankel AD . Functional segregation of overlapping genes in HIV . Cell . 2016 ; 167 ( 7 ) : 1762 - 1773 . e12 . doi: 10.1016/j.cell.2016.11.031 Open DOISearch in Google Scholar

80. Safari M, Jayaraman B, Yang S, Smith C, Fernandes JD, Frankel AD. Functional and structural segregation of overlapping helices in HIV-1. Elife. 2022;11:e72482. doi:10.7554/eLife.72482 Safari M Jayaraman B Yang S Smith C Fernandes JD Frankel AD . Functional and structural segregation of overlapping helices in HIV-1 . Elife . 2022 ; 11 : e72482 . doi: 10.7554/eLife.72482 Open DOISearch in Google Scholar

81. Dingle K, Ghaddar F, Šulc P, Louis AA. Phenotype bias determines how natural RNA structures occupy the morphospace of all possible shapes. Mol Biol Evol. 2022;39(1):msab280. Available from: https://doi.org/10.1093/molbev/msab280. Dingle K Ghaddar F Šulc P Louis AA . Phenotype bias determines how natural RNA structures occupy the morphospace of all possible shapes . Mol Biol Evol . 2022 ; 39 ( 1 ): msab280 . Available from: https://doi.org/ 10.1093/molbev/msab280 . Open DOISearch in Google Scholar

82. Schulz L, Sendker FL, Hochberg GKA. Non-adaptive complexity and biochemical function. Curr Opin Structur Biol. 2022 April;73:102339. Schulz L Sendker FL Hochberg GKA . Non-adaptive complexity and biochemical function . Curr Opin Structur Biol . 2022 April ; 73 : 102339 . Search in Google Scholar

83. Gould SJ, Lewontin RC. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Concept Iss Evol Biol. 1979;205:79. Gould SJ Lewontin RC . The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme . Concept Iss Evol Biol . 1979 ; 205 : 79 . Search in Google Scholar

84. Morris SC. Life’s solution: Inevitable humans in a lonely universe. Cambridge: Cambridge University Press; 2003. Available from: https://doi.org/10.1017/CBO9780511535499 Morris SC . Life’s solution: Inevitable humans in a lonely universe . Cambridge : Cambridge University Press ; 2003 . Available from: https://doi.org/ 10.1017/CBO9780511535499 Open DOISearch in Google Scholar

eISSN:
2719-8634
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Chemistry, Biochemistry, Life Sciences, Evolutionary Biology, Philosophy, History of Philosophy, other, Physics, Astronomy and Astrophysics