Otwarty dostęp

Potential benefits of blood flow restriction training in patients with type 2 diabetes: A narrative literature review

, , ,  oraz   
03 cze 2025

Zacytuj
Pobierz okładkę

Abueid, S. (2024). Blood-Flow Restriction Walking: Effects on Insulin Sensitivity and Aerobic Capacity in Type 2 Diabetes. https://doi.org/10.61186/aassjournal.1477 Search in Google Scholar

Amani-Shalamzari, S., Rajabi, S., Rajabi, H., Gahreman, D. E., Paton, C., Bayati, M., Rosemann, T., Nikolaidis, P. T., & Knechtle, B. (2019). Effects of Blood Flow Restriction and Exercise Intensity on Aerobic, Anaerobic, and Muscle Strength Adaptations in Physically Active Collegiate Women. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00810 Search in Google Scholar

Bielitzki, R., Behrendt, T., Behrens, M., & Schega, L. (2021). Current Techniques Used for Practical Blood Flow Restriction Training: A Systematic Review. Journal of Strength and Conditioning Research, 35(10), 2936–2951. https://doi.org/10.1519/JSC.0000000000004104 Search in Google Scholar

Chen, H., Huang, X., Dong, M., Wen, S., Zhou, L., & Yuan, X. (2023). The Association Between Sarcopenia and Diabetes: From Pathophysiology Mechanism to Therapeutic Strategy. Diabetes, Metabolic Syndrome and Obesity, Volume 16, 1541–1554. https://doi.org/10.2147/DMSO.S410834 Search in Google Scholar

Cho, C., & Lee, S. (2024). The Effects of Blood Flow Restriction Aerobic Exercise on Body Composition, Muscle Strength, Blood Biomarkers, and Cardiovascular Function: A Narrative Review. International Journal of Molecular Sciences, 25(17), 9274. https://doi.org/10.3390/ijms25179274 Search in Google Scholar

Christiansen, D., Eibye, K. H., Hostrup, M., & Bangsbo, J. (2019). Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans. Metabolism, 98, 1–15. https://doi.org/10.1016/j.metabol.2019.06.003 Search in Google Scholar

Christiansen, D., Eibye, K., Hostrup, M., & Bangsbo, J. (2020). Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men. The Journal of Physiology, 598(12), 2337–2353. https://doi.org/10.1113/JP279554 Search in Google Scholar

Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Castorino, K., & Tate, D. F. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065–2079. https://doi.org/10.2337/dc16-1728 Search in Google Scholar

Dremin, V., Volkov, M., Margaryants, N., Myalitsin, D., Rafailov, E., & Dunaev, A. (2025). Blood flow dynamics in the arterial and venous parts of the capillary. Journal of Biomechanics, 179, 112482. https://doi.org/10.1016/j.jbiomech.2024.112482 Search in Google Scholar

Early, K. S., Rockhill, M., Bryan, A., Tyo, B., Buuck, D., & McGinty, J. (2020). Effect of blood flow restriction training on muscular performance, pain and vascular function. International Journal of Sports Physical Therapy, 15(6), 892–900. https://doi.org/10.26603/ijspt20200892 Search in Google Scholar

Fini, E. M., Motefakker, M., Ahmadizad, S., Salimian, M., & Andani, F. M. (2023). Responses of Hemodynamic and Hematological Changes to Resistance Exercise with and Without Blood Flow Restriction in Patients with Type 2 Diabetic. 2(30), 284–300. Search in Google Scholar

Fini, E. M., Salimian, M., & Ahmadizad, S. (2022). Responses of platelet CD markers and indices to resistance exercise with and without blood flow restriction in patients with type 2 diabetes. Clinical Hemorheology and Microcirculation, 80(3), 281–289. https://doi.org/10.3233/CH-211229 Search in Google Scholar

Giles, L., Webster, K. E., McClelland, J., & Cook, J. L. (2017). Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. British Journal of Sports Medicine, 51(23), 1688–1694. https://doi.org/10.1136/bjsports-2016-096329 Search in Google Scholar

Groen, B. B. L., Hamer, H. M., Snijders, T., van Kranenburg, J., Frijns, D., Vink, H., & van Loon, L. J. C. (2014). Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. Journal of Applied Physiology, 116(8), 998–1005. https://doi.org/10.1152/japplphysiol.00919.2013 Search in Google Scholar

Hedt, C., McCulloch, P. C., Harris, J. D., & Lambert, B. S. (2022). Blood Flow Restriction Enhances Rehabilitation and Return to Sport: The Paradox of Proximal Performance. Arthroscopy, Sports Medicine, and Rehabilitation, 4(1), e51–e63. https://doi.org/10.1016/j.asmr.2021.09.024 Search in Google Scholar

Izquierdo, M., Merchant, R. A., Morley, J. E., Anker, S. D., Aprahamian, I., Arai, H., Aubertin-Leheudre, M., Bernabei, R., Cadore, E. L., Cesari, M., Chen, L.-K., de Souto Barreto, P., Duque, G., Ferrucci, L., Fielding, R. A., García-Hermoso, A., Gutiérrez-Robledo, L. M., Harridge, S. D. R., Kirk, B., … Singh, M. F. (2021). International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. The Journal of Nutrition, Health and Aging, 25(7), 824–853. https://doi.org/10.1007/s12603-021-1665-8 Search in Google Scholar

Jarosz, J., Trybulski, R., Krzysztofik, M., Tsoukos, A., Filip-Stachnik, A., Zajac, A., Bogdanis, G. C., & Wilk, M. (2021). The Effects of Ischemia During Rest Intervals on Bar Velocity in the Bench Press Exercise With Different External Loads. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.715096 Search in Google Scholar

Jones, M. T., Aguiar, E. J., & Winchester, L. J. (2021). Proposed Mechanisms of Blood Flow Restriction Exercise for the Improvement of Type 1 Diabetes Pathologies. In Diabetology (Vol. 2, Issue 4, pp. 176–189). MDPI. https://doi.org/10.3390/diabetology2040016 Search in Google Scholar

Joyner, M. J., & Casey, D. P. (2015). Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs. Physiological Reviews, 95(2), 549–601. https://doi.org/10.1152/physrev.00035.2013 Search in Google Scholar

Klein, S., Gastaldelli, A., Yki-Järvinen, H., & Scherer, P. E. (2022). Why does obesity cause diabetes? Cell Metabolism, 34(1), 11–20. https://doi.org/10.1016/j.cmet.2021.12.012 Search in Google Scholar

Koutny, T. (2013). Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues. Computers in Biology and Medicine, 43(11), 1680–1686. https://doi.org/10.1016/j.compbiomed.2013.08.008 Search in Google Scholar

Lee, S.-H., Park, S.-Y., & Choi, C. S. (2022). Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46(1), 15–37. https://doi.org/10.4093/dmj.2021.0280 Search in Google Scholar

Li, S., Li, S., Wang, L., Quan, H., Yu, W., Li, T., & Li, W. (2022). The Effect of Blood Flow Restriction Exercise on Angiogenesis-Related Factors in Skeletal Muscle Among Healthy Adults: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.814965 Search in Google Scholar

Lopez-Pedrosa, J. M., Camprubi-Robles, M., Guzman-Rolo, G., Lopez-Gonzalez, A., Garcia-Almeida, J. M., Sanz-Paris, A., & Rueda, R. (2024). The Vicious Cycle of Type 2 Diabetes Mellitus and Skeletal Muscle Atrophy: Clinical, Biochemical, and Nutritional Bases. Nutrients, 16(1), 172. https://doi.org/10.3390/nu16010172 Search in Google Scholar

Lorenz, D. S., Bailey, L., Wilk, K. E., Mangine, R. E., Head, P., Grindstaff, T. L., & Morrison, S. (2021). Blood Flow Restriction Training. Journal of Athletic Training, 56(9), 937–944. https://doi.org/10.4085/418-20 Search in Google Scholar

Ma, X., Ai, Y., Lei, F., Tang, X., Li, Q., Huang, Y., Zhan, Y., Mao, Q., Wang, L., Lei, F., Yi, Q., Yang, F., Yin, X., He, B., Zhou, L., & Ruan, S. (2024). Effect of blood flow-restrictive resistance training on metabolic disorder and body composition in older adults with type 2 diabetes: a randomized controlled study. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1409267 Search in Google Scholar

Martins, A., José Brandão de Albuquerque Filho, N., Gonçalves Assis, M., Sabino de Queiros, V., Wagner da Silva Rodrigues, A., Samara Batista dos Santos, E., Guilherme de Araújo Tinôco Cabral, B., Cesar Gomes da Silva, J., & Rodrigues Neto, G. (2023). Resistance exercise with blood flow restriction elicits perceptual responses similar to high-load resistance exercise in women with type 2 diabetes: a crossover and randomized study. Health Nexus, 1(1), 32–39. https://doi.org/https:/doi.org/10.61838/kman.hn.1.1.6 Search in Google Scholar

Manini, T. M., Vincent, K. R., Leeuwenburgh, C. L., Lees, H. A., Kavazis, A. N., Borst, S. E., & Clark, B. C. (2011). Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta physiologica, 201(2), 255–263. Search in Google Scholar

Mondal, A., Jangra, M. K., Banyal, M., & Saxena, A. (2024). Reaping Metabolic Benefits of Blood Flow Restriction Training (BFRT): A Boon for Diabetes and HypertensionA Narrative Review. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2024/75493.20004 Search in Google Scholar

Mudaliar, S., & Edelman, S. V. (2001). Insulin therapy in type 2 diabetes. Endocrinology and Metabolism Clinics of North America, 30(4), 935–982. https://doi.org/10.1016/S0889-8529(05)70222-X Search in Google Scholar

Nascimento, D. da C., Rolnick, N., Neto, I. V. de S., Severin, R., & Beal, F. L. R. (2022). A Useful Blood Flow Restriction Training Risk Stratification for Exercise and Rehabilitation. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.808622 Search in Google Scholar

Okita, K., Takada, S., Morita, N., Takahashi, M., Hirabayashi, K., Yokota, T., & Kinugawa, S. (2019). Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Applied Physiology, Nutrition, and Metabolism, 44(7), 759–764. https://doi.org/10.1139/apnm-2018-0321 Search in Google Scholar

Park, S. W., Goodpaster, B. H., Lee, J. S., Kuller, L. H., Boudreau, R., de Rekeneire, N., Harris, T. B., Kritchevsky, S., Tylavsky, F. A., Nevitt, M., Cho, Y., & Newman, A. B. (2009). Excessive Loss of Skeletal Muscle Mass in Older Adults With Type 2 Diabetes. Diabetes Care, 32(11), 1993–1997. https://doi.org/10.2337/dc09-0264 Search in Google Scholar

Park, S.-Y., Kwak, Y. S., Harveson, A., Weavil, J. C., & Seo, K. E. (2015). Low Intensity Resistance Exercise Training with Blood Flow Restriction: Insight into Cardiovascular Function, and Skeletal Muscle Hypertrophy in Humans. The Korean Journal of Physiology & Pharmacology, 19(3), 191. https://doi.org/10.4196/kjpp.2015.19.3.191 Search in Google Scholar

Pignanelli, C., Christiansen, D., & Burr, J. F. (2021). Blood flow restriction training and the high-performance athlete: science to application. Journal of Applied Physiology, 130(4), 1163–1170. https://doi.org/10.1152/japplphysiol.00982.2020 Search in Google Scholar

Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021a). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010 Search in Google Scholar

Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021b). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010 Search in Google Scholar

Saatmann, N., Zaharia, O.-P., Loenneke, J. P., Roden, M., & Pesta, D. H. (2021c). Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 32(2), 106–117. https://doi.org/10.1016/j.tem.2020.11.010 Search in Google Scholar

Şahin, E., Ayaz, T., & Saglam, M. (2024). Acute effects of blood flow restricted aerobic exercise in type 2 diabetes mellitus. Medicine (United States), 103(31), e39031. https://doi.org/10.1097/MD.0000000000039031 Search in Google Scholar

Satoh, T. (2014). Molecular Mechanisms for the Regulation of Insulin-Stimulated Glucose Uptake by Small Guanosine Triphosphatases in Skeletal Muscle and Adipocytes. International Journal of Molecular Sciences, 15(10), 18677–18692. https://doi.org/10.3390/ijms151018677 Search in Google Scholar

Schoenfeld, B. J., Ogborn, D., Piñero, A., Burke, R., Coleman, M., & Rolnick, N. (2023). Fiber-Type-Specific Hypertrophy with the Use of Low-Load Blood Flow Restriction Resistance Training: A Systematic Review. Journal of Functional Morphology and Kinesiology, 8(2), 51. https://doi.org/10.3390/jfmk8020051 Search in Google Scholar

Shah, A., Mehta, N., & Reilly, M. P. (2008). Adipose Inflammation, Insulin Resistance, and Cardiovascular Disease. Journal of Parenteral and Enteral Nutrition, 32(6), 638–644. https://doi.org/10.1177/0148607108325251 Search in Google Scholar

Strasser, B. (2018). Survival of the fittest VO sub 2 sub max a key predictor of longevity. Frontiers in Bioscience, 23(8), 4657. https://doi.org/10.2741/4657 Search in Google Scholar

Takano, H., Morita, T., Iida, H., Asada, K., Kato, M., Uno, K., Hirose, K., Matsumoto, A., Takenaka, K., Hirata, Y., Eto, F., Nagai, R., Sato, Y., & Nakajima, T. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European Journal of Applied Physiology, 95(1), 65–73. https://doi.org/10.1007/s00421-005-1389-1 Search in Google Scholar

Tanaka, M., Morifuji, T., Sugimoto, K., Akasaka, H., Fujimoto, T., Yoshikawa, M., Nakanishi, R., Kondo, H., & Fujino, H. (2021). Effects of combined treatment with blood flow restriction and low-current electrical stimulation on capillary regression in the soleus muscle of diabetic rats. Journal of Applied Physiology, 131(4), 1219–1229. https://doi.org/10.1152/japplphysiol.00366.2021 Search in Google Scholar

Tanaka, M., Morifuji, T., Yoshikawa, M., Nakanishi, R., & Fujino, H. (2018). Effects of combined treatment with blood flow restriction and low intensity electrical stimulation on diabetes mellitus-associated muscle atrophy in rats. https://doi.org/10.1111/jdb.12857 Search in Google Scholar

Wagner da Silva Rodrigues, A., Beatriz Alves Martins, A., José Brandão de Albuquerque Filho, N., Sabino de Queiros, V., Gonçalves Assis, M., Samara Batista dos Santos, E., Arthur Cavalcanti Cabral, L., Barbosa Gomes, F., Taheri, M., Irandoust, K., Rodrigues Neto, G., Silva Rodrigues, da, Martins, A., Albuquerque Filho, de, Queiros, de, Assis, G., Santos, dos, & Cabral, C. (2023). Strength Exercises With Blood Flow Restriction Promotes Hypotensive and Hypoglycemic Effects in Women With Mellitus Type 2 Diabetes?: Randomized Crossover Study. Health Nexus, 1(1), 32–39. https://doi.org/https://doi.org/10.61838/kman.hn.1.1.6 Search in Google Scholar

Wilk, M., Trybulski, R., Krzysztofik, M., Wojdala, G., Campos, Y., Zajac, A., Lulińska, E., & Stastny, P. (2021). Acute Effects of Different Blood Flow Restriction Protocols on Bar Velocity During the Squat Exercise. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.652896 Search in Google Scholar

Wong, V., Spitz, R. W., Song, J. S., Yamada, Y., Kataoka, R., Hammert, W. B., Kang, A., Seffrin, A., Bell, Z. W., & Loenneke, J. P. (2024). Blood flow restriction augments the cross-education effect of isometric handgrip training. European Journal of Applied Physiology, 124(5), 1575–1585. https://doi.org/10.1007/s00421-023-05386-y Search in Google Scholar

Wortman, R. J., Brown, S. M., Savage-Elliott, I., Finley, Z. J., & Mulcahey, M. K. (2021). Blood Flow Restriction Training for Athletes: A Systematic Review. The American Journal of Sports Medicine, 49(7), 1938–1944. https://doi.org/10.1177/0363546520964454 Search in Google Scholar